Advertisement

Solving \(\mathrm {LIA} ^\star \) Using Approximations

  • Maxwell Levatich
  • Nikolaj BjørnerEmail author
  • Ruzica Piskac
  • Sharon Shoham
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11990)

Abstract

Linear arithmetic with stars, \(\mathrm {LIA} ^\star \), is an extension of Presburger arithmetic that allows forming indefinite summations over values that satisfy a formula. It has found uses in decision procedures for multi-sets and for vector addition systems. \(\mathrm {LIA} ^\star \) formulas can be translated back into Presburger arithmetic, but with non-trivial space overhead. In this paper we develop a decision procedure for \(\mathrm {LIA} ^\star \) that checks satisfiability of \(\mathrm {LIA} ^\star \) formulas. By refining on-demand under and over-approximations of \(\mathrm {LIA} ^\star \) formulas, it can avoid the space overhead that is integral to previous approaches. We have implemented our procedure in a prototype and report on encouraging results that suggest that \(\mathrm {LIA} ^\star \) formulas can be checked for satisfiability without computing a prohibitively large equivalent Presburger formula.

References

  1. 1.
    Berkovits, I., Lazić, M., Losa, G., Padon, O., Shoham, S.: Verification of threshold-based distributed algorithms by decomposition to decidable logics. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 245–266. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-25543-5_15CrossRefGoogle Scholar
  2. 2.
    Blondin, M., Haase, C., Mazowiecki, F.: Affine extensions of integer vector addition systems with states. In: CONCUR, volume 118 of LIPIcs, pp. 14:1–14:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)Google Scholar
  3. 3.
    Bouillaguet, C., Kuncak, V., Wies, T., Zee, K., Rinard, M.: Using first-order theorem provers in the jahob data structure verification system. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 74–88. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-69738-1_5CrossRefGoogle Scholar
  4. 4.
    Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets of integers. Bull. Belg. Math. Soc. 1, 191–238 (1994)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Büchi, J.R.: Weak second-order arithmetic and finite automata. Math. Logic Q. 6(1–6), 66–92 (1960)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Contejean, E., Devie, H.: An efficient incremental algorithm for solving systems of linear Diophantine equations. Inf. Comput. 113(1), 143–172 (1994)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. Am. J. Math. 35, 413–422 (1913)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages. Pac. J. Math. 16(2), 285–296 (1966)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Haase, C., Zetzsche, G.: Presburger arithmetic with stars, rational subsets of graph groups, and nested zero tests. In: LICS, pp. 1–14. IEEE (2019)Google Scholar
  10. 10.
    Jovanovic, D., de Moura, L.: Cutting to the chase - solving linear integer arithmetic. J. Autom. Reason. 51(1), 79–108 (2013)CrossRefGoogle Scholar
  11. 11.
    Kruskal, J.B.: The theory of well-quasi-ordering: a frequently discovered concept. J. Comb. Theory Ser. A 13(3), 297–305 (1972)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kuncak, V., Nguyen, H.H., Rinard, M.: An algorithm for deciding BAPA: Boolean algebra with Presburger arithmetic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 260–277. Springer, Heidelberg (2005).  https://doi.org/10.1007/11532231_20CrossRefGoogle Scholar
  13. 13.
    Kuncak, V., Nguyen, H.H., Rinard, M.C.: Deciding Boolean algebra with Presburger arithmetic. J. Autom. Reason. 36(3), 213–239 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Leroux, J.: The general vector addition system reachability problem by Presburger inductive invariants. Logic. Methods Comput. Sci. 6(3) (2010)Google Scholar
  15. 15.
    Lugiez, D.: Multitree automata that count. Theor. Comput. Sci. 333(1–2), 225–263 (2005) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Piskac, R., Kuncak, V.: Decision procedures for multisets with cardinality constraints. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 218–232. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78163-9_20CrossRefzbMATHGoogle Scholar
  17. 17.
    Piskac, R., Kuncak, V.: Linear arithmetic with stars. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 268–280. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70545-1_25CrossRefGoogle Scholar
  18. 18.
    Piskac, R., Kuncak, V.: MUNCH - automated reasoner for sets and multisets. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 149–155. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14203-1_13CrossRefzbMATHGoogle Scholar
  19. 19.
    Pottier, L.: Minimal solutions of linear diophantine systems: bounds and algorithms. In: Book, R.V. (ed.) RTA 1991. LNCS, vol. 488, pp. 162–173. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-53904-2_94CrossRefGoogle Scholar
  20. 20.
    Zarba, C.G.: Combining multisets with integers. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 363–376. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45620-1_30CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Maxwell Levatich
    • 1
    • 2
    • 3
  • Nikolaj Bjørner
    • 1
    • 2
    • 3
    Email author
  • Ruzica Piskac
    • 1
    • 2
    • 3
  • Sharon Shoham
    • 1
    • 2
    • 3
  1. 1.YaleNew HavenUSA
  2. 2.Microsoft ResearchRedmondUSA
  3. 3.Tel Aviv UniversityTel AvivIsrael

Personalised recommendations