Advertisement

Promptness and Bounded Fairness in Concurrent and Parameterized Systems

  • Swen JacobsEmail author
  • Mouhammad Sakr
  • Martin Zimmermann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11990)

Abstract

We investigate the satisfaction of specifications in Prompt Linear Temporal Logic (\({\text {Prompt-LTL}}\)) by concurrent systems. Prompt-LTL is an extension of LTL that allows to specify parametric bounds on the satisfaction of eventualities, thus adding a quantitative aspect to the specification language. We establish a connection between bounded fairness, bounded stutter equivalence, and the satisfaction of \({\text {Prompt-LTL}} {\setminus }\mathbf{X} \) formulas. Based on this connection, we prove the first cutoff results for different classes of systems with a parametric number of components and quantitative specifications, thereby identifying previously unknown decidable fragments of the parameterized model checking problem.

References

  1. 1.
    Alur, R., Etessami, K., La Torre, S., Peled, D.A.: Parametric temporal logic for “model measuring”. ACM Trans. Comput. Log. 2(3), 388–407 (2001).  https://doi.org/10.1145/377978.377990MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized model checking of token-passing systems. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 262–281. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54013-4_15CrossRefzbMATHGoogle Scholar
  3. 3.
    Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameterized model checking of rendezvous systems. Distrib. Comput. 31(3), 187–222 (2018).  https://doi.org/10.1007/s00446-017-0302-6MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Außerlechner, S., Jacobs, S., Khalimov, A.: Tight cutoffs for guarded protocols with fairness. CoRR abs/1505.03273 (2015). http://arxiv.org/abs/1505.03273
  5. 5.
    Außerlechner, S., Jacobs, S., Khalimov, A.: Tight cutoffs for guarded protocols with fairness. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 476–494. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49122-5_23CrossRefGoogle Scholar
  6. 6.
    Baier, C., Katoen, J.P.: Principles of Model Checking. vol. 26202649. MIT press Cambridge (2008)Google Scholar
  7. 7.
    Bloem, R., Jacobs, S., Khalimov, A.: Parameterized synthesis case study: AMBA AHB. In: SYNT. EPTCS, vol. 157, pp. 68–83 (2014).  https://doi.org/10.4204/EPTCS.157.9
  8. 8.
    Bloem, R., et al.: Decidability of Parameterized Verification. Synthesis Lectures on Distributed Computing Theory, Morgan & Claypool Publishers (2015).  https://doi.org/10.2200/S00658ED1V01Y201508DCT013
  9. 9.
    Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418. Springer, Heidelberg (2000).  https://doi.org/10.1007/10722167_31CrossRefGoogle Scholar
  10. 10.
    Clarke, E., Talupur, M., Touili, T., Veith, H.: Verification by network decomposition. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 276–291. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28644-8_18CrossRefGoogle Scholar
  11. 11.
    Clarke, E., Talupur, M., Veith, H.: Proving ptolemy right: the environment abstraction framework for model checking concurrent systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 33–47. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78800-3_4CrossRefzbMATHGoogle Scholar
  12. 12.
    Emerson, E.A., Kahlon, V.: Model checking guarded protocols. In: LICS, pp. 361–370. IEEE Computer Society (2003).  https://doi.org/10.1109/LICS.2003.1210076
  13. 13.
    Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. Found. Comput. Sci. 14(4), 527–549 (2003).  https://doi.org/10.1142/S0129054103001881MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In: McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 236–254. Springer, Heidelberg (2000).  https://doi.org/10.1007/10721959_19CrossRefGoogle Scholar
  15. 15.
    Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: LICS, pp. 352–359. IEEE Computer Society (1999).  https://doi.org/10.1109/LICS.1999.782630
  16. 16.
    Esparza, J.: Keeping a crowd safe: on the complexity of parameterized verification (invited talk). In: STACS. LIPIcs, vol. 25, pp. 1–10. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2014).  https://doi.org/10.4230/LIPIcs.STACS.2014.1
  17. 17.
    Esparza, J., Ganty, P., Majumdar, R.: Parameterized verification of asynchronous shared-memory systems. J. ACM 63(1), 10:1–10:48 (2016).  https://doi.org/10.1145/2842603MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Etessami, K.: Stutter-invariant languages, \(\omega \)-automata, and temporal logic. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 236–248. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48683-6_22CrossRefGoogle Scholar
  19. 19.
    Faymonville, P., Zimmermann, M.: Parametric linear dynamic logic. Inf. Comput. 253, 237–256 (2017).  https://doi.org/10.1016/j.ic.2016.07.009MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM 39(3), 675–735 (1992).  https://doi.org/10.1145/146637.146681MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Jacobs, S., Bloem, R.: Parameterized synthesis. Log. Methods Comput. Sci. 10, 1–29 (2014).  https://doi.org/10.2168/LMCS-10(1:12)2014MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Jacobs, S., Sakr, M.: Analyzing guarded protocols: better cutoffs, more systems, more expressivity. Verification, Model Checking, and Abstract Interpretation. LNCS, vol. 10747, pp. 247–268. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73721-8_12CrossRefGoogle Scholar
  23. 23.
    Jacobs, S., Sakr, M., Zimmermann, M.: Promptness and bounded fairness in concurrent and parameterized systems. CoRR abs/1911.03122 (2019). http://arxiv.org/abs/1911.03122
  24. 24.
    Jacobs, S., Tentrup, L., Zimmermann, M.: Distributed synthesis for parameterized temporal logics. Inf. Comput. 262, 311–328 (2018).  https://doi.org/10.1016/j.ic.2018.09.009MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 645–659. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14295-6_55CrossRefGoogle Scholar
  26. 26.
    Khalimov, A., Jacobs, S., Bloem, R.: Towards efficient parameterized synthesis. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 108–127. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35873-9_9CrossRefGoogle Scholar
  27. 27.
    Kupferman, O., Piterman, N., Vardi, M.Y.: From liveness to promptness. Formal Methods Syst. Des. 34(2), 83–103 (2009)CrossRefGoogle Scholar
  28. 28.
    Kurshan, R.P., McMillan, K.L.: A structural induction theorem for processes. Inf. Comput. 117(1), 1–11 (1995).  https://doi.org/10.1006/inco.1995.1024MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Namjoshi, K.S.: Symmetry and completeness in the analysis of parameterized systems. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 299–313. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-69738-1_22CrossRefzbMATHGoogle Scholar
  30. 30.
    Pnueli, A., Ruah, S., Zuck, L.: Automatic deductive verification with invisible invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 82–97. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45319-9_7CrossRefGoogle Scholar
  31. 31.
    Spalazzi, L., Spegni, F.: Parameterized model-checking of timed systems with conjunctive guards. In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol. 8471, pp. 235–251. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12154-3_15CrossRefGoogle Scholar
  32. 32.
    Spalazzi, L., Spegni, F.: On the existence of cutoffs for model checking disjunctive timed networks. In: CEUR Workshop Proceedings ICTCS/CILC, vol. 1949, pp. 174–185. CEUR-WS.org (2017)Google Scholar
  33. 33.
    Suzuki, I.: Proving properties of a ring of finite state machines. Inf. Process. Lett. 28(4), 213–214 (1988).  https://doi.org/10.1016/0020-0190(88)90211-6MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: LICS, pp. 322–331. IEEE Computer Society (1986)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.CISPA Helmholtz Center for Information SecuritySaarbrückenGermany
  2. 2.Saarland UniversitySaarbrückenGermany
  3. 3.University of LiverpoolLiverpoolUK

Personalised recommendations