Advertisement

Towards Modeling Framework for DevOps: Requirements Derived from Industry Use Case

  • Francis BordeleauEmail author
  • Jordi Cabot
  • Juergen Dingel
  • Bassem S. Rabil
  • Patrick Renaud
Conference paper
  • 463 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12055)

Abstract

To succeed with the development, deployment, and operation of the new generation of complex systems, organizations need the agility to adapt to constantly evolving environments. In this context, DevOps has emerged as an evolution of the agile approaches. It focuses on optimizing the flow of activities involved in the creation of end-user value, from idea to deployed functionality and operating systems. However, in spite of its popularity, DevOps still lacks proper engineering frameworks to support continuous improvement. One of our key objectives is to contribute to the development of a DevOps engineering framework composed of process, methods, and tools. A core part of this framework relates to the modeling of the different aspects of the DevOps system. To better understand the requirements of modeling in a DevOps context, we focus on a Product Build use case provided by an industry partner.

Keywords

DevOps Modeling Process 

References

  1. 1.
    Artač, M., Borovšak, T., Di Nitto, E., Guerriero, M., Tamburri, D.A.: Model-driven continuous deployment for quality devOps. In: Proceedings of the 2nd International Workshop on Quality-Aware DevOps, QUDOS 2016, pp. 40–41. ACM, New York (2016).  https://doi.org/10.1145/2945408.2945417
  2. 2.
  3. 3.
    Babar, Z., Lapouchnian, A., Yu, E.: Modeling DevOps deployment choices using process architecture design dimensions. In: Ralyté, J., España, S., Pastor, Ó. (eds.) PoEM 2015. LNBIP, vol. 235, pp. 322–337. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25897-3_21CrossRefGoogle Scholar
  4. 4.
    Bencomo, N., Götz, S., Song, H.: Models@run.time: a guided tour of the state of the art and research challenges. Softw. Syst. Model. 18(5), 3049–3082 (2019).  https://doi.org/10.1007/s10270-018-00712-xCrossRefGoogle Scholar
  5. 5.
    Bergmayr, A., et al.: A systematic review of cloud modeling languages. ACM Comput. Surv. 51(1), 22:1–22:38 (2018).  https://doi.org/10.1145/3150227CrossRefGoogle Scholar
  6. 6.
    Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice, Second Edition. Synthesis Lectures on Software Engineering. Morgan & Claypool Publishers (2017).  https://doi.org/10.2200/S00751ED2V01Y201701SWE004CrossRefGoogle Scholar
  7. 7.
    Bruneliere, H., Burger, E., Cabot, J., et al.: A feature-based survey of model view approaches. Softw. Syst. Model. 18, 1931–1952 (2019).  https://doi.org/10.1007/s10270-017-0622-9CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Ferry, N., et al.: ENACT: development, operation, and quality assurance of trustworthy smart IoT systems. In: Software Engineering Aspects of Continuous Development and New Paradigms of Software Production and Deployment - First International Workshop, DEVOPS 2018, Chateau de Villebrumier, France, March 5–6, 2018, Revised Selected Papers, pp. 112–127 (2018). https://doi.org/10.1007/978-3-030-06019-0_9CrossRefGoogle Scholar
  10. 10.
    Garcia, J., Cabot, J.: Stepwise adoption of continuous delivery in model-driven engineering. In: Bruel, J.-M., Mazzara, M., Meyer, B. (eds.) DEVOPS 2018. LNCS, vol. 11350, pp. 19–32. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-06019-0_2CrossRefGoogle Scholar
  11. 11.
    García-Díaz, V., Espada, J.P., Núñez-Valdéz, E.R., García-Bustelo, B.C.P., Lovelle, J.M.C.: Combining the continuous integration practice and the model-driven engineering approach. Comput. Inform. 35, 299–337 (2016)zbMATHGoogle Scholar
  12. 12.
  13. 13.
  14. 14.
  15. 15.
  16. 16.
    Kim, G., Debois, P., Willis, J., Humble, J.: The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in Technology Organizations. IT Revolution Press, Portland (2016)Google Scholar
  17. 17.
    Object Management Group (OMG): Unified modeling language (UML) version 2.0. Standard, Object Management Group (OMG), July 2005. https://www.omg.org/spec/UML/2.0
  18. 18.
    Object Management Group (OMG): Business process model and notation version 2.0. Standard, Object Management Group (OMG), December 2011. https://www.omg.org/spec/BPMN/2.0/
  19. 19.
    Object Management Group (OMG): Omg system modeling language version 1.4. Standard, Object Management Group (OMG), August 2015. https://www.omg.org/spec/SysML/1.4
  20. 20.
  21. 21.
    Ståhl, D., Bosch, J.: Industry application of continuous integration modeling: a multiple-case study. In: 2016 IEEE/ACM 38th International Conference on Software Engineering Companion (ICSE-C), pp. 270–279, May 2016Google Scholar
  22. 22.
  23. 23.
    Vogel, T., Seibel, A., Giese, H.: The role of models and megamodels at runtime. In: Dingel, J., Solberg, A. (eds.) MODELS 2010. LNCS, vol. 6627, pp. 224–238. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21210-9_22CrossRefGoogle Scholar
  24. 24.
    Wettinger, J., Breitenbücher, U., Kopp, O., Leymann, F.: Streamlining devops automation for cloud applications using TOSCA as standardized metamodel. Future Gener. Comput. Syst. 56, 317–332 (2016).  https://doi.org/10.1016/j.future.2015.07.017CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Francis Bordeleau
    • 1
    Email author
  • Jordi Cabot
    • 2
  • Juergen Dingel
    • 3
  • Bassem S. Rabil
    • 4
  • Patrick Renaud
    • 4
  1. 1.École de technologie supérieure (ETS)Université du QuébecQuebec CityCanada
  2. 2.ICREA – Open University of Catalonia (OUC)BarcelonaSpain
  3. 3.Queen’s UniversityKingstonCanada
  4. 4.KaloomQuebecCanada

Personalised recommendations