Advertisement

Drought Variability and Trend Over the Lombardy Plain from Meteorological Station Records

  • C. GandolfiEmail author
  • A. Facchi
  • A. Crespi
  • M. Rienzner
  • M. Maugeri
Conference paper
  • 27 Downloads
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 67)

Abstract

The spatial and temporal variability of droughts over the period 1951–2017 for a portion of Lombardy plain (Northern Italy) was reconstructed starting from a quality-checked and homogenized database of long precipitation and temperature station records covering the study region. The monthly meteorological series were interpolated over the period 1951–2017 onto a 30-arc second resolution grid covering the area by means of an anomaly-based procedure and the gridded fields were used to extract for each cell the series of two standardized drought indices: Standardized Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI). SPI and SPEI trend analyses were performed on annual and seasonal scales at both regional and grid-point levels. Theil-Sen test on SPI values highlighted a significant drying tendency (Mann-Kendall p-value <0.05) for summer only (−0.14 decade−1), while SPEI series exhibited a more negative summer trend (−0.22 decade−1) and significant reductions also in spring and annual values (−0.14 and −0.17 decade−1, respectively), suggesting an increase of evapotranspiration rates driven by higher temperature. Moreover, the trend analyses at grid cell level highlighted a greater negative and significant tendency for the western and southern part of the domain. Similar outcomes were obtained by assessing the temporal evolution of drought features over the decades in terms of frequency, duration and severity.

Keywords

Drought SPI SPEI Trend analysis Observations 

Notes

Acknowledgements

The activity presented in the paper is part of the research grant “SO-WATCH—SOft path WATer management adaptation to CHanging climate”, funded by Fondazione CARIPLO (www.fondazionecariplo.it).

References

  1. Brunetti, M., Lentini, G., Maugeri, M., Nanni, T., Auer, I., Böhm, R., et al. (2009). Climate variability and change in the Greater Alpine Region over the last two centuries based on multi-variable analysis. International Journal of Climatology, 29, 2197–2225.  https://doi.org/10.1002/joc.1857.CrossRefGoogle Scholar
  2. Brunetti, M., Maugeri, M., Nanni, T., Simolo, C., & Spinoni, J. (2014). High-resolution temperature climatology for Italy: Interpolation method intercomparison. International Journal of Climatology, 34(4), 1278–1296.Google Scholar
  3. Buttafuoco, G., Caloiero, T., & Coscarelli, R. (2015). Analyses of drought events in Calabria (Southern Italy) using standardized precipitation index. Water Resources Management, 29, 557–573.  https://doi.org/10.1007/s11269-014-0842-5.CrossRefGoogle Scholar
  4. Craddock, J. (1979). Methods of comparing annual rainfall records for climatic purposes. Weather, 34, 332–346.  https://doi.org/10.1002/j.1477-8696.1979.tb03465.x.CrossRefGoogle Scholar
  5. Crespi, A., Brunetti, M., Maugeri, M., Ranzi, R., & Tomirotti, M. (2018a). 1845–2016 gridded dataset of monthly precipitation over the upper Adda river basin: A comparison with runoff series. Advances in Science and Research, 15, 173–181.  https://doi.org/10.5194/asr-15-173-2018.CrossRefGoogle Scholar
  6. Crespi, A., Brunetti, M., Lentini, G., & Maugeri, M. (2018b). 1961–1990 high-resolution monthly precipitation climatologies for Italy. International Journal of Climatology, 38, 878–895.  https://doi.org/10.1002/joc.5217.CrossRefGoogle Scholar
  7. Daly, C., Gibson, W. P., Taylor, G. H., Johnson, G. L., & Pasteris, P. (2002). A knowledge-based approach to the statistical mapping of climate. Climate Research, 22, 99–113.  https://doi.org/10.3354/cr022099.CrossRefGoogle Scholar
  8. IPCC. (2014). In R. K. Pachauri, L. A. Meyer (Eds.), Climate Change 2014: Synthesis Report. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Core Writing Team. Geneva, Switzerland: IPCC, 151 pp.Google Scholar
  9. IPCC. (2018). Global Warming of 1.5 °C. In V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, Maycock, M. Tignor & T. Waterfield (Eds.), World meteorological organization, Geneva, Switzerland.Google Scholar
  10. Isotta, F. A., Frei, C., Weilguni, V., Perčec Tadić, M., Lassègues, P., Rudolf, B., et al. (2014). The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. International Journal of Climatology, 34, 1657–1675.  https://doi.org/10.1002/joc.3794.CrossRefGoogle Scholar
  11. McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, pp. 179–183). Boston, MA: American Meteorological Society.Google Scholar
  12. New, M., Hulme, M., & Jones, P. (2000). Representing twentieth-century space-time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. Journal of Climate, 13, 2217–2238.  https://doi.org/10.1175/1520-0442(2000)013%3c2217:rtcstc%3e2.0.co;2.CrossRefGoogle Scholar
  13. Piccarreta, M., Capolongo, D., & Boenzi, F. (2004). Trend analysis of precipitation and drought in Basilicata from 1923 to 2000 within a southern Italy context. International Journal of Climatology, 24, 907–922.  https://doi.org/10.1002/joc.1038.CrossRefGoogle Scholar
  14. Scapin, S., Apadula, F., Brunetti, M., & Maugeri, M. (2015). The sensitivity of present-time electricity demand on past climate change: a case study for Italy. Earth Perspectives, 4, 2194–6434.  https://doi.org/10.1186/s40322-015-0030-7.CrossRefGoogle Scholar
  15. Spinoni, J., Naumann, G., Carrao, H., Barbosa, P., & Vogt, J. (2014). World drought frequency, duration, and severity for 1951–2010. International Journal of Climatology, 34, 2792–2804.  https://doi.org/10.1002/joc.3875.CrossRefGoogle Scholar
  16. Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P., & Dosio, A. (2018). Will drought events become more frequent and severe in Europe? International Journal of Climatology, 38, 1718–1736.  https://doi.org/10.1002/joc.5291.CrossRefGoogle Scholar
  17. Stagge, J. H., Kingston, D. G., Tallaksen, L. M., & Hannah, D. M. (2017). Observed drought indices show increasing divergence across Europe. Scientific Reports, 7, 14045.  https://doi.org/10.1038/s41598-017-14283-2.CrossRefGoogle Scholar
  18. Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55–94.  https://doi.org/10.2307/210739.CrossRefGoogle Scholar
  19. Tsakiris, G., Pangalou, D., & Vangelis, H. (2007). Regional drought assessment based on the reconnaissance drought index (RDI). Water Resources Management, 21, 821–833.  https://doi.org/10.1007/s11269-006-9105-4.CrossRefGoogle Scholar
  20. Vergni, L., & Todisco, F. (2011). Spatio-Temporal variability of precipitation, temperature and agricultural drought indices in central Italy. Agricultural and Forest Meteorology, 151, 301–313.  https://doi.org/10.1016/j.agrformet.2010.11.005.CrossRefGoogle Scholar
  21. Vicente-Serrano, S. M., Lopez-Moreno, J. I., Beguería, S., Lorenzo-Lacruz, J., Sanchez-Lorenzo, A., García-Ruiz, J. M., et al. (2014). Evidence of increasing drought severity caused by temperature rise in southern Europe. Environmental Research Letters, 9, 044001.  https://doi.org/10.1088/1748-9326/9/4/044001.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • C. Gandolfi
    • 1
    Email author
  • A. Facchi
    • 1
  • A. Crespi
    • 1
  • M. Rienzner
    • 1
  • M. Maugeri
    • 2
  1. 1.Department of Agricultural and Environmental SciencesUniversità degli Studi di MilanoMilanItaly
  2. 2.Department of Environmental Science and PolicyUniversità degli Studi di MilanoMilanItaly

Personalised recommendations