Advertisement

Nonlinearity Estimation of Digital Signals

  • Kiril AlexievEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1126)

Abstract

Assessing the nonlinearity of one signal, system, or dependence of one signal on another is of great importance in the design process. The article proposes an algorithm for simplified nonlinearity estimation of digital signals. The solution provides detailed information to constructors about existing nonlinearities, which in many cases is sufficient to make the correct choice of processing algorithms. The programming code of the algorithm is presented and its implementation is demonstrated on a set of basic functions. Several steps to further development of the proposed approach are outlined.

Keywords

Nonlinearity estimation Nonlinear dependencies Nonlinear models 

References

  1. 1.
    Haykin, S.: Signal processing in a nonlinear, nongaussian, and nonstationary world. In: Chollet, G., Esposito, A., Faundez-Zanuy, M., Marinaro, M. (eds.) NN 2004. LNCS (LNAI), vol. 3445, pp. 43–53. Springer, Heidelberg (2005).  https://doi.org/10.1007/11520153_3CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Xiong, X.Y.Z., Jiang, L.J., Schutt-Aine, J.E., Chew, W.C.: Volterra series-based time-domain macromodeling of nonlinear circuits. IEEE Trans. Compon. Packag. Manuf. Technol. 7(1), 39–49 (2017).  https://doi.org/10.1109/TCPMT.2016.2627601CrossRefGoogle Scholar
  4. 4.
    Roweis, S.T., Ghahramani, Z.: Learning nonlinear dynamical system using the expectation-maximization algorithm. In Haykin, S. (ed.) Kalman Filtering and Neural Networks, First published: 01 October 2001. Wiley, Hoboken (2001).  https://doi.org/10.1002/0471221546.ch6, https://cs.nyu.edu/~roweis/papers/nlds.pdf
  5. 5.
    Bar-Shalom, Y., Forthmann, T.: Tracking and Data Association. Academic Press, San Diego (1988)Google Scholar
  6. 6.
    Bar-Shalom, Y. (ed.): Multitarget-Multisensor Tracking: Advanced Applications. Norwood, Chicago (1990)Google Scholar
  7. 7.
    Bar-Shalom, Y., Li, X.R.: Multitarget-Multisensor Tracking: Principles and Techniques. Artech House, Boston (1993)Google Scholar
  8. 8.
    Li, X.R.: Engineers’ Guide to Variable-Structure Multiple-Model Estimation and Tracking (2000). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.8701&rep=rep1&type=pdf
  9. 9.
    Blom, H.A.P., Bloem, E.A.: Joint IMM and coupled PDA to track closely spaced targets and to avoid track coalescence. In: Proceedings of the Seventh International Conference on Information Fusion, pp. 130–137 (2005) Google Scholar
  10. 10.
    Beale, E.M.L.: Confidence regions in non-linear estimation. J. Roy. Stat. Soc. Ser. B (Methodol.) 22(1), 41–88 (1960)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Desoer, C.A., Wang, Y.T.: Foundations of feedback theory for nonlinear dynamical systems. IEEE Trans. Circ. Syst. 27(2), 104–123 (1980)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bates, D.M., Watts, D.G.: Relative curvature measures of nonlinearity. J. Roy. Stat. Soc.: Ser. B (Methodol.) 42(1), 1–25 (1980). Wiley for the Royal Statistical Society. https://www.jstor.org/stable/2984733MathSciNetzbMATHGoogle Scholar
  13. 13.
    Emancipator, K., Kroll, M.H.: A quantitative measure of nonlinearity. Clin. Chem. 39(5), 766–772 (1993)CrossRefGoogle Scholar
  14. 14.
    Tugnait, J.K.: Testing for linearity of noisy stationary signals. IEEE Trans. Signal Process. 42(10), 2742–2748 (1994)CrossRefGoogle Scholar
  15. 15.
    Allgower, F.: Definition and Computation of a Nonlinearity Measure. IFAC Nonlinear Control Systems Design, Tahoe City, California, USA (1995)Google Scholar
  16. 16.
    Helbig, A., Marquardt, W., Allgower, F.: Nonlinearity measures: definition, computation and applications. J. Process Control 10, 113–123 (2000)CrossRefGoogle Scholar
  17. 17.
    Barnett, A.G., Wolff, R.C.: A time-domain test for some types of nonlinearity. IEEE Trans. Signal Process. 53(1), 26–33 (2005) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hosseini, S.M., Johansen, T.A., Fatehi, A.: Comparison of nonlinearity measures based on time series analysis for nonlinearity detection. Model. Identif. Control 32(4), 123–140 (2011). ISSN 1890-1328CrossRefGoogle Scholar
  19. 19.
    Haber, R.: Nonlinearity test for dynamic process. In: IFAC Identification and system Parameter Estimation (1985)Google Scholar
  20. 20.
    Smith, R.: A mutual information approach to calculating nonlinearity. The ISI’s Journal for the Rapid Dissemination of Statistics Research. https://doi.org/10.100X/sta.0000, (http://wileyonlinelibrary.com)
  21. 21.
    Liu, Y., Li, X.R.: Measure of nonlinearity for estimation. IEEE Trans. Signal Process. 63(9), 2377–2388 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Shi, W., Cheung, C.: Performance evaluation of line simplification algorithms for vector generalization. Cartographic J. 43(1), 27–44 (2006)CrossRefGoogle Scholar
  23. 23.
    Kotchoni, R.: Detecting and measuring nonlinearity. MDPI, Econometrics 6, 37 (2018).  https://doi.org/10.3390/econometrics6030037CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Communication and Information TechnologiesBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations