A New Model in Firefighting Theory

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12016)


Continuous and discrete models [1, 5] for firefighting problems are well-studied in Theoretical Computer Science. We introduce a new, discrete, and more general framework based on a hexagonal cell graph to study firefighting problems in varied terrains. We present three different firefighting problems in the context of this model; for two of which, we provide efficient polynomial time algorithms and for the third, we show NP-completeness. We also discuss possible extensions of the model and their implications on the computational complexity.


Cellular automaton Combinatorial algorithms Computational complexity Discrete geometry Fire spread models Fire behaviour modeling Firefighting Forest fire simulation Frontal propagation Graph algorithms Graph theory NP-completeness Undecidability 



We thank all anonymous reviewers for their helpful comments and suggestions.


  1. 1.
    Bressan, A.: Differential inclusions and the control of forest fires. J. Differ. Equ. 243(2), 179–207 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Develin, M., Hartke, S.G.: Fire containment in grids of dimension three and higher. Discrete Appl. Math. 155(17), 2257–2268 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Eiglsperger, M., Fekete, S.P., Klau, G.W.: Orthogonal graph drawing. In: Drawing Graphs, Methods and Models, pp. 121–171 (1999)CrossRefGoogle Scholar
  4. 4.
    Finbow, S., MacGillivray, G.: The firefighter problem: a survey of results, directions and questions. Australas. J. Comb. 43, 57–78 (2009)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Fomin, F.V., Heggernes, P., van Leeuwen, E.J.: The firefighter problem on graph classes. Theor. Comput. Sci. 613, 38–50 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Gardner, M.: Mathematical games: the fantastic combinations of john conway’s new solitaire game “life”. Sci. Am. 223, 120–123 (1970)CrossRefGoogle Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem in NP complete. SIAM J. Appl. Math. 32, 826–834 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Kim, S.-S., Klein, R., Kübel, D., Langetepe, E., Schwarzwald, B.: Geometric firefighting in the half-plane. In: Friggstad, Z., Sack, J.-R., Salavatipour, M.R. (eds.) WADS 2019. LNCS, vol. 11646, pp. 481–494. Springer, Cham (2019). Scholar
  9. 9.
    Klein, R., Kübel, D., Langetepe, E., Sack, J.R., Schwarzwald, B.: A new model in firefighting theory. CoRR abs/1911.10341 (2019).
  10. 10.
    Klein, R., Langetepe, E., Schwarzwald, B., Levcopoulos, C., Lingas, A.: On a fire fighter’s problem. Int. J. Found. Comput. Sci. 30(2), 231–246 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Pastor, E., Zárate, L., Planas, E., Arnaldos, J.: Mathematical models and calculation systems for the study of wildland fire behaviour. Prog. Energy Combust. Sci. 29(2), 139–153 (2003)CrossRefGoogle Scholar
  12. 12.
    Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modeling. MIT Press, Cambridge (1987)zbMATHCrossRefGoogle Scholar
  13. 13.
    Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3), 601 (1983)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversität BonnBonnGermany
  2. 2.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations