Advertisement

Overview: Antecedents, Motivation and Necessity

  • Gabriel CristóbalEmail author
  • Saúl Blanco
  • Gloria Bueno
Chapter
  • 79 Downloads
Part of the Developments in Applied Phycology book series (DAPH, volume 10)

Abstract

This chapter introduces the antecedents, motivation, and necessity of the use of automatic identification methods in diatom taxonomy. Expert biologists have a repetitive and laborious identification mission. The principal taxonomic features used to describe and classify diatoms relate to the morphology and texture of frustule. Classical taxonomic diagnosis is carried out by means of identification keys or by visual comparison with respect to standard preparations or reference iconographies. Automatic diatom identification remains an open challenge because, for instance, many diatoms that have been known by the same species for decades have subsequently been split into different species, while on the other hand the emergence of new species is continuous. The very promising results of the new deep learning techniques together with the development of new optical devices in microscopy allow to predict a significant advance in the field.

Notes

Acknowledgements

This research was partially sponsored by the project CTM2014-51907 financed by the Spanish Ministry of Economy, Industry, and Competitiveness.

References

  1. 1.
    Blanco, S., Becares, E.: Are biotic indices sensitive to river toxicants? A comparison of metrics based on diatoms and macro-invertebrates. Chemosphere 79, 18–25 (2010)PubMedGoogle Scholar
  2. 2.
    Blanco, S., Ector, L., Becares, E.: Epiphytic diatoms as water quality indicators in Spanish shallow lakes. Vie et milieu 54, 71–79 (2004)Google Scholar
  3. 3.
    Blanco, S., et al.: Comparison of biotic indices for water quality diagnosis in the Duero Basin (Spain). Arch. Hydrobiol. Suppl. Large Rivers 17, 267–286 (2007)Google Scholar
  4. 4.
    Blanco, S., et al.: Are diatom diversity indices reliable monitoring metrics? Hydrobiologia 695, 199–206 (2012)CrossRefGoogle Scholar
  5. 5.
    Blanco, S., et al.: Epiphytic diatoms along environmental gradients in Western European shallow lakes. Clean: Soil, Air, Water 42, 229–235 (2014)Google Scholar
  6. 6.
    Caballero Bellido, E.: Tecnica de las preparaciones microscopicas sistematicas. Junta Ampliacion Estudios e Investigaciones Cientificas, Madrid (1925)Google Scholar
  7. 7.
    Cejudo-Figueiras, C., et al.: Nutrient monitoring in Spanish wetlands using epiphytic diatoms. Vie et milieu 60, 89–94 (2010)Google Scholar
  8. 8.
    Diatoms online. Making the invisible visible. https://bit.ly/2GQHhF3. Accessed 1 Mar 2019
  9. 9.
    Diatom 3D models found in the HSPDP research project. https://bit.ly/2JT4l8t. Accessed 1 Apr 2019
  10. 10.
    du Buf, H., Bayer, M. (eds.): Automatic Diatom Identification. Series in Machine Perception and Artificial Intelligence, vol. 51. World Scientific, Singapore (2002)Google Scholar
  11. 11.
    Foraminifera 3D models of Elphidium spp. https://bit.ly/2JT4l8t. Accessed 1 Apr 2019
  12. 12.
    Gill, S. (ed.): Contributions to the Diatom Flora of Leicestershire. https://bit.ly/2YAHr9j. Accessed 1 Apr 2019
  13. 13.
    Gill, S. (ed.): An Account of the Diatom Flora of Nuneaton and some Outlying Districts. https://bit.ly/2I3B9Jl. Accessed 1 Apr 2019
  14. 14.
    Gill, S. (ed.): Some Further Works – Horace G. Barber. https://bit.ly/2Va0BAr. Accessed 1 Apr 2019
  15. 15.
    Gill, S., Edgar, S. (eds.): Horace George Barber’s Miscellaneous Diatom Plates. https://bit.ly/2I3ALKT. Accessed 1 Apr 2019
  16. 16.
    Guiry, M.D.: How many species of algae are there? J. Psychol. 48(5), 1057–1063 (2012)Google Scholar
  17. 17.
    Heron-Allen, E., Earland, A.: Zoology vol VI Foraminifera. The Trustees of the British Museum (1922)Google Scholar
  18. 18.
    Kelly, M.: Of Microscopes and monsters. https://bit.ly/2IazKSV. Accessed 12 Feb 2019
  19. 19.
    Lavigne, R.: The Schmidt’s diatom atlas. HTML version. https://bit.ly/2GI0JTt. Accessed 12 Feb 2019
  20. 20.
    Lecointe, C., Coste, M., Prygiel, J., Ector, L.: Le logiciel OMNIDIA version 2, une puissante base de donnees pour les inventaires de diatomees et pour le calcul des indices diatomiques europeens. Cryptogam. Algol. 20, 132–134 (1999)Google Scholar
  21. 21.
    Mann, D., Droop, S.: Biodiversity, biogeography and conservation of diatoms. In: Kristiansen, J. (ed.) Biogeography of Freshwater Algae. Developments in Hydrobiology, vol. 118, pp. 19–32. Dordrecht, Springer (1996)CrossRefGoogle Scholar
  22. 22.
    Mikro-forum. https://bit.ly/2K555qW. Accessed 1 Apr 2019
  23. 23.
    Prygiel, J., Whitton, B.A., Bukowska, J. (eds.): Use of Algae for Monitoring Rivers III, Agence de l’Eau Artois-Picardie, France, ISBN: 2-9502083-5-5 (1999)Google Scholar
  24. 24.
    Round, F.E.. Diatoms in river water-monitoring studies. J. Appl. Physiol. 3, 129–145 (1991)Google Scholar
  25. 25.
    Round, F.E.: A Review and Methods for the Use of Epilithic Diatoms for Detecting and Monitoring Changes in River Water Quality. H.M. Stationery Office, Richmond (1993)Google Scholar
  26. 26.
    Round, F.E., Crawford, R.M., Mann, D.G.: Diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge (2007)Google Scholar
  27. 27.
    Schmidt, A.: Atlas der diatomaceenkunde. Forgesetzt durch M. Schmidt, F. Fricke, H. Heiden, O. Muller, F. Husted, O.R. Reisland, Leipzig, Germany (1874–1959)Google Scholar
  28. 28.
    Simonsen, R.: Atlas and catalogue of the diatom types of Friedrich Hustedt. Schweizerbart Publishers, Stuttgart (1987)Google Scholar
  29. 29.
    Simulation software to study diatoms. https://bit.ly/2JZ9XxY. Accessed 1 Apr 2019
  30. 30.
    Singh, H., Sanchez, C., Cristobal, G., Bueno G.: Pencil drawing of microscopic images through edge preserving filtering. In: Morales, A., Fierrez, J., Sánchez, J., Ribeiro B. (eds.) Pattern Recognition and Image Analysis. IbPRIA 2019. Lecture Notes in Computer Science, vol. 11868. Springer, Berlin (2019)Google Scholar
  31. 31.
    Smol, J.P., Stoermer, E.F.: The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  32. 32.
    Stoermer, E.F., Smol, J.P.: The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge (2001)Google Scholar
  33. 33.
    The Amateur Diatomist. http://www.diatoms.co.uk/. Accessed 1 Apr 2019
  34. 34.
    Video about slide preparation. https://bit.ly/2FP5kSY. Accessed 1 Apr 2019
  35. 35.
    Video about a water drop simple microscope. https://bit.ly/2FP5kSY. Accessed 1 Apr 2019
  36. 36.
    Whitton, B.A., Kelly, M.: Use of algae and other plants for monitoring rivers. Austral Ecol. 20, 45–56 (1995)CrossRefGoogle Scholar
  37. 37.
    Young ISDR. Early-career researchers and technicians group of the International Society of Diatom Research. http://youngisdr.blogspot.com/. Accessed 12 Feb 2019

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Gabriel Cristóbal
    • 1
    Email author
  • Saúl Blanco
    • 2
    • 3
  • Gloria Bueno
    • 4
  1. 1.Instituto de Optica (CSIC)MadridSpain
  2. 2.Facultad de Ciencias Biológicas y Ambientales, Departamento de Biodiversidad y Gestión AmbientalUniversidad de LeónLeónSpain
  3. 3.Laboratorio de diatomología y calidad de aguas, Instituto de Investigación de Medio Ambiente, Recursos Naturales y BiodiversidadLeónSpain
  4. 4.VISILAB, Universidad de Castilla-La ManchaCiudad RealSpain

Personalised recommendations