Biotechnological Potential of Cottonseed, a By-Product of Cotton Production

  • E. Rojo-Gutiérrez
  • J. J. Buenrostro-Figueroa
  • L. X. López-Martínez
  • D. R. Sepúlveda
  • R. Baeza-JiménezEmail author
Part of the Applied Environmental Science and Engineering for a Sustainable Future book series (AESE)


Cotton (Gossypium hirsutum L.) is an important fibre crop of global significance. It is grown and harvested in tropical and subtropical regions of more than 80 countries. The state of Chihuahua, in Mexico, is the leader in the production of cotton covering 70% of national production. According to statistics reported in 2016, 488,000 metric tons were obtained and utilized as follows: 93% for textile industry, 2.28% as cattle feed, 1.1% was re-harvested, and the other 3.56% was discharged, and in consequence an environmental impact occurs. That remaining cottonseed constitutes a potential agroindustry residue with biotechnological applications due to its chemical composition: fibre, proteins (as well as essential amino acids such as lysine, methionine, tryptophan, and other amino acids) carbohydrates, and lipids (it is important to highlight gossypol and the fatty acids profile). In this chapter, food and bioenergy applications of cottonseed in terms of bioactive compounds (phenolic content), bioactivity (antioxidant activity), and lipid content (production of biodiesel) are reviewed, as well as the chemical compounds responsible of such applications, different types of extraction methods and analytical protocols for their identification, purification, and quantification.


Bioactive compounds Bioactivity Biotechnological applications Cottonseed 


  1. Alexander J et al (2009) Gossypol as undesirable substance in animal feed. EFSA J 908:1–55. CrossRefGoogle Scholar
  2. Arișanuv AO, Rus F (2017) Current techniques and processes for vegetable oil extraction from oilseed crops. Bull Transilv Univ Brasov Ser II – Forestry Wood Ind Agric Food Eng 10(59):65–70Google Scholar
  3. Arslan FN, Şapçı AN, Duru F, Kara H (2016) A study on monitoring of frying performance and oxidative stability of cottonseed and palm oil blends in comparison with original oils. Int J Food Prop 20(3):704–717. CrossRefGoogle Scholar
  4. Avci U, Pattathil S, Singh B, Brown VL, Hahn MG, Haigler CH (2013) Cotton fiber cell walls of Gossypium hirsutum and Gossypium barbadense have differences related to loosely-bound xyloglucan. PLoS One 8(2):e56315. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bernard JK (2016) Oilseed and oilseed meals. Ref Module Food Sci 349–355Google Scholar
  6. Bernklau EJ, Hibbard BE, Bjostad LB (2016) Toxic and behavioural effects of free fatty acids on western corn rootworm (Coleoptera: Chrysomelidae) larvae. J Appl Entomol 140(10):725–735. CrossRefGoogle Scholar
  7. Bhattacharjee P, Singhal RS, Tiwari SR (2007) Supercritical carbon dioxide extraction of cottonseed oil. J Food Eng 79(3):892–898. CrossRefGoogle Scholar
  8. Bockisch M (1998) Chapter 2 – Composition, structure, physical data, and chemical reactions of fats and oils, their derivatives, and their associates. In: Bockisch M (ed) Fats and oils handbook. AOCS Press, Illinois, pp 53–120. CrossRefGoogle Scholar
  9. Broderick GA, Kerkman TM, Sullivan HM, Dowd MK, Funk PA (2013) Effect of replacing soybean meal protein with protein from upland cottonseed, Pima cottonseed, or extruded Pima cottonseed on production of lactating dairy cows. J Dairy Sci 96(4):2374–2386. CrossRefPubMedGoogle Scholar
  10. Brown DE, Rashotte AM, Murphy AS, Normanly J, Taque BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 2001(126):524–535. CrossRefGoogle Scholar
  11. Ceriani R, Meirelles JA (2004) Predicting vapor-liquid equilibria of fatty systems. Fluid Phase Equilibria 215(1):227–236. CrossRefGoogle Scholar
  12. Clément M, Tang L (2018) Skin penetration of two topical formulations of gossypol, an ex vivo comparative study. Indian J Pharm Sci 80(1):199–204. CrossRefGoogle Scholar
  13. Codex Alimentarius (1999) International foods standars. WHO. Codex Stan 201–1999Google Scholar
  14. Cope RB (2018) Chapter 68 – Cottonseed toxicity. In: Gupta RC (ed) Veterinary toxicology, 3rd edn. Academic Press, New York, pp 967–980. CrossRefGoogle Scholar
  15. de Melo AR, Pereira Garcia IJ, Serrão JE, Santos HL, Rodrigues Dos Santos Lima KA, Alves SN (2018) Toxicity of different fatty acids and methyl esters on Culex quinquefasciatus larvae. Ecotoxicol Environ Saf 154:1–5. CrossRefPubMedGoogle Scholar
  16. de Oliveira Filho JG, Rodrigues JM, Fernandes Valadares AC, Borges de Almeida A, Mayara de Lima T, Pareira Takeuchi K, Fernandes Alves CCM, Alves de Figueiredo Sousa H, da Silva ER, Dyszy FH, Buranelo Egea M (2019) Active food packaging: Alginate films with cottonseed protein hydrolysates. Food Hydrocoll 92:267–275. CrossRefGoogle Scholar
  17. Denev P, Lojek A, Ciz M, Kratchanova M (2013) Antioxidant activity and polyphenol content of Bulgarian fruits. Bulgarian J Agr Sci 19:22–27Google Scholar
  18. Do QD, Angkawijaya AE, Tran-Nguyen PL, Huong Huynh L, Edi Soetaredjo F, Ismadji S, Ju YH (2014) Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J Food Drug Anal 22(3):296–302. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dugan M (2019) Cotton. J Agric Food Inform 10(2):92–101. CrossRefGoogle Scholar
  20. Egbuta M, McIntosh S, Waters D, Vancov T, Liu L (2017) Biological importance of cotton by-products relative to chemical constituents of the cotton plant. Molecules 22(1):93. CrossRefPubMedCentralGoogle Scholar
  21. Eiras CE, Guerrero A, Valero MV, Pardo JA, Ornaghi MG, Rivaroli DC, Sañudo C, Prado IN (2016) Effects of cottonseed hull levels in the diet and ageing time on visual and sensory meat acceptability from young bulls finished in feedlot. Animal 11(03):529–537. CrossRefPubMedGoogle Scholar
  22. Gadelha IC, Fonseca NB, Oloris SC, Melo MM, Soto-Blanco B (2014) Gossypol toxicity from cottonseed products. Sci World J 2014(2014):231635. CrossRefGoogle Scholar
  23. Ghazani SM, Marangoni AG (2016) Healthy fats and oils. In: Wrigley C, Corke H, Seetharaman K, Faubion J (eds) Encyclopedia of food grains, 2nd edn. Academic Press, New York, pp 257–267. CrossRefGoogle Scholar
  24. He Z, Shankle M, Zhang H, Way TR, Tewolde H, Uchimiya M (2013) Mineral composition of cottonseed is affected by fertilization management practices. Agron J 105(2):341–350. CrossRefGoogle Scholar
  25. He Z, Zhang D, Cao H (2018) Protein profiling of water and alkali soluble cottonseed protein isolates. Sci Rep 8:9306. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hernandez E (2016) Cottonseed. Ref Module Food Sci 1:343–348. CrossRefGoogle Scholar
  27. Heuzé V, et al (2015) Cotton seeds. Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. Last updated on May 12, 2015, 14:25
  28. Imran M, Nadeem M (2015) Triacylglycerol composition, physico-chemical characteristics and oxidative stability of interesterified canola oil and fully hydrogenated cottonseed oil blends. Lipids Health Dis 14:138. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jahaniaval F, Kakuda Y, Marcone MF (2000) Fatty acid and triacylglycerol compositions of seed oils of five amaranthus accessions and their comparison to other oils. J Am Oil Chem Soc 77(8):847–852. CrossRefGoogle Scholar
  30. Jamshaid M, Masjuki HH, Kalam MA, Zulkifli NWM, Arslan A, Alwi A, Khuong LS, Alabdulkarem A, Syahir AZ (2018) Production optimization and tribological characteristics of cottonseed oil methyl ester. J Clean Prod 209:62–73. CrossRefGoogle Scholar
  31. Kakani R, Gamboa DA, Calhoun MC, Haq AU, Bailey CA (2010) Relative toxicity of cottonseed gossypol enantiomers in broilers. Open Toxicol J 4:26–31. CrossRefGoogle Scholar
  32. Lepak GS et al (2016) Improved oxidative stability of biodiesel via alternative processing methods using cottonseed oil. Int J Sustain Eng 10(2):105–114. CrossRefGoogle Scholar
  33. Li L, Li Z, Wang K, Liu Y, Li Y, Wang Q (2015) Synthesis and antiviral, insecticidal, and fungicidal activities of gossypol derivatives containing alkylimine, oxime or hydrazine moiety. Bioorg Med Chem 24(3):474–483. CrossRefPubMedGoogle Scholar
  34. List GR (2017) 2 – Oilseed composition and modification for health and nutrition. In: Sanders TAB (ed) Woodhead publishing series in food science, technology and nutrition. Functional dietary lipids. Woodhead Publishing, Cambridge, pp 23–46. CrossRefGoogle Scholar
  35. Lu Y, Li J, Dong CE, Huang J, Zhou HB, Wang W (2017) Recent advances in gossypol derivatives and analogs: a chemistry and biology view. Future Med Chem 9(11):1243–1275. CrossRefPubMedGoogle Scholar
  36. Malhotra R, Ali A (2018) 5-Na/ZnO doped mesoporous silica as reusable solid catalyst for biodiesel production via transesterification of virgin cottonseed oil. Renew Energy 133:606–619. CrossRefGoogle Scholar
  37. McCarty JC, Deng DD, Jenkins JN, Geng L (2018) Genetic diversity of day-neutral converted landrace Gossypium hirsutum L. accessions. Euphytica 214(10):173. CrossRefGoogle Scholar
  38. Mendoza CP, Gómez MRT, Gonzalez QO, Padilla F, Corral JAR (2016) Genetic resources of cotton in Mexico: ex situ and in situ conservation and use. REMEXCA 7(1):5–16CrossRefGoogle Scholar
  39. Mohdaly R, Seliem H, Hassan M, Mahmoud AAT (2017) Effect of refining process on the quality characteristics of soybean and cottonseed oils. Int J Curr Microbiol App Sci 6(1):207–222. CrossRefGoogle Scholar
  40. Nadeem M, Imran M, Khalique A (2015) Promising features of mango (Mangifera indica L.) kernel oil: a review. J Food Sci Technol 53(5):2185–2195. CrossRefGoogle Scholar
  41. Nix A, Paull C, Colgrave M (2017) Flavonoid profile of the cotton plant, Gossypium hirsitum: a review. Plan Theory 6(4):43. CrossRefGoogle Scholar
  42. O’Sullivan CM, Barbut S, Marangoni SG (2016) Edible oleogels for the oral delivery of lipid soluble molecules: composition and structural design considerations. Trends Food Sci Technol 57(A):59–73. CrossRefGoogle Scholar
  43. OECD (2015) Safety assessment of foods and feeds derived from transgenic crops, volume 2, novel food and feed safety. OECD Publishing, Paris. CrossRefGoogle Scholar
  44. Okonkwo SI, Okafor EC (2016) Determination of the proximate composition, physicochemical analysis and characterization of fatty acid on the seed and oil of Gossypium hirsutum. Int J Chem 8(3):57–61. CrossRefGoogle Scholar
  45. Pehlivanoglu H, Ozulku G, Yildirim RM, Demirci M, Toker OS, Sagdic O (2018) Investigating the usage of unsaturated fatty acid-rich and low-calorie oleogels as a shortening mimetics in cake. J Food Process Preserv 42(6):e13621. CrossRefGoogle Scholar
  46. Pradyawong S, Li J, He Z, Sun XS, Wang D, Cheng HN, Klasson KT (2018) Blending cottonseed meal products with different protein contents for cost-effective wood adhesive performances. Ind Crop Prod 126:31–37. CrossRefGoogle Scholar
  47. Rocha-Munive MG, Soberón M, Castañeda S, Niaves E, Scheinvar E, Eguiarte LE, Mota-Sánchez D, Rosales-Robles E, Nava-Camberos U, Martínez-Carrillo JL, Blanco CA, Bravo A, Souza V (2018) Evaluation of the impact of genetically modified cotton after 20 years of cultivation. Front Bioeng Biotechnol 6(82).
  48. Saxena DK, Sharma SK, Sambi SS (2011) Kinetics and thermodynamics of cottonseed oil extraction. Grasas Aceites 62(2):198–205. CrossRefGoogle Scholar
  49. Scheffler JA (2016) Evaluating protective terpenoid aldehyde compounds in cotton (Gossypium hirsutum L.) Roots. Am J Plant Sci 7:1086–1907. CrossRefGoogle Scholar
  50. Świątkiewicz S, Arczewska-WŁosek A, Józefiak D (2016) The use of cottonseed meal as a protein source for poultry: an updated review. Worlds Poult Sci J 72(03):473–484. CrossRefGoogle Scholar
  51. Taghvaei M, Jafari SM, Assadpoor E, Nowrouzieh S, Alishah O (2014) Optimization of microwave-assisted extraction of cottonseed oil and evaluation of its oxidative stability and physicochemical properties. Food Chem 160:90–97. CrossRefPubMedGoogle Scholar
  52. Tan J, Tu L, Deng F, Hu H, Nie Y, Zhang X (2013) A genetic and metabolic analysis revealed that cotton fiber cell development was retarded by flavonoid Naringenin. Plant Physiol 2013(162):86–95. CrossRefGoogle Scholar
  53. Teodoro AV, De Sousa Silva MJ, De Sena Filho JG, De Oliveira EE, Serra Galvão A, Santos Silva S (2017) Bioactivity of cottonseed oil against the coconut mite Aceria guerreronis (Acari:Eriophyidae) and side effects on Typhlodromus ornatus (Acari: Phytoseiidae). Syst Appl Acarol 22(7):1037–1047. CrossRefGoogle Scholar
  54. Tian X, Ruan J, Huang J, Fang X, Mao Y, Wang L, Chen X, Yang C (2016) Gossypol: phytoalexin of cotton. Sci China Life Sci 59(2):122–129. CrossRefPubMedGoogle Scholar
  55. Wang X, Howell CP, Chen F, Yin J, Jiang Y (2009) Gossypol—a polyphenolic compound from cotton plant. Adv Food Nutr Res 58:215–263. CrossRefPubMedGoogle Scholar
  56. Wegier A, Alavez V, Piñero D (2016) Cotton: traditional and modern uses. In: Lira R, Casas A, Blancas J (eds) Ethnobotany of Mexico. Ethnobiology. Springer, New York, NY, pp 439–456. CrossRefGoogle Scholar
  57. Wen N, Dong Y, Song R, Zhang W, Sun C, Zhuang X, Guan Y, Meng Q, Zhang Y (2018) Zero-order release of gossypol improves its antifertility effect and reduces its side effects simultaneously. Biomacromolecules 19(6):1918–1925. CrossRefPubMedGoogle Scholar
  58. Xie X, et al (2017) Gossypol l-arginine schiff base compound with antitumor activities and a method of preparing the same. US9,975,849B1Google Scholar
  59. Xilong J, Li J, Yang Q, Wang J, Su T, Zhou S (2017) Gossypol has anti-cancer effects by dual-targeting MDM2 and VEGF in human breast cancer. Breast Cancer Res 19(1):27. CrossRefGoogle Scholar
  60. Xuan T, Gangqiang G, Minh T, Quy T, Khanh T (2018) An overview of chemical profiles, antioxidant and antimicrobial activities of commercial vegetable edible oils marketed in Japan. Foods 7(2):21. CrossRefPubMedCentralGoogle Scholar
  61. Yamamoto K, Kotani A, Hakamata H (2018) Electrochemical detection of tocopherols in vegetable oils by supercritical fluid chromatography equipped with carbon fiber electrodes. Anal Methods 10:4414–4418. CrossRefGoogle Scholar
  62. Yildirim S, Röcker B, Kvalvág Pettersen M, Nilsen-Nygaard J, Ayhan Z, Rutkaite R, Radusin T, Suminska P, Marcos B, Coma V (2017) Active packaging applications for food. Compr Food Sci Food Saf 17(1):165–199. CrossRefGoogle Scholar
  63. Yücel CO, Ertas H, Ertas NF (2017) Gas chromatographic determination and method validation of stigmasterol, b-sitosterol, campesterol and Brassicosterol contents of Turkish cottonseed oil samples.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Centro de Investigación en Alimentación y DesarrolloDeliciasMexico
  2. 2.CONACYT-Centro de Investigación en Alimentación y DesarrolloHermosilloMexico
  3. 3.Centro de Investigación en Alimentación y DesarrolloCuauhtémocMexico

Personalised recommendations