Advertisement

Mangosteen Peel Antioxidant Extraction and Its Use to Improve the Stability of Biodiesel B20 Oxidation

  • MegawatiEmail author
  • Rizqy Romadhona Ginting
  • Ratna Dewi Kusumaningtyas
  • Wahyudi Budi Sediawan
Chapter
  • 15 Downloads
Part of the Applied Environmental Science and Engineering for a Sustainable Future book series (AESE)

Abstract

Antioxidants can be extracted from mangosteen peel with ethanol as solvent using microwave assisted extraction (MAE) efficiently and economically. The mangosteen peel antioxidant can be used to inhibit the biodiesel B20 oxidation. The microwave power gives a great factor of antioxidant conversion in mangosteen peel extraction. At 35 min and 300, 450, 600 W, the antioxidant conversions obtained were 15.45, 17.00, 18.33%, respectively. The total phenolic concentration was about 156–202 mg GAE/g. In addition, the extraction kinetic can be quantitatively described by antioxidant diffusivity from inside the solid to the solid’s surface and antioxidant mass transfer from the solid’s surface into solution with diffusion coefficient (De) of 2.81 × 10−11, 3.42 × 10−11, 3.8 × 10−11 cm2/s, mass transfer coefficient (kc) of 6.36 × 10−8, 8.97 × 10−8, 1.05 × 10−7 cm/s for 300, 450, 600 W, respectively, and Henry equilibrium constant (H) of 0.032. In the oxidation, the mangosteen extract antioxidant can improve 26.32% of the oxidative stability of biodiesel B20. Theoretically, the performance of mangosteen peel extract antioxidants in biodiesel B20 oxidation can be evaluated from its oxidation kinetic which can be approached using the pseudo-homogeneous first-order model. The reaction rate constant follows the Arrhenius equation with activation energy (Ea) of 54.34 and 56.27 kJ/mol as well as collision factors (A) of 348,711 1/min, for the oxidation of biodiesel B20 and the mixture of biodiesel B20 and mangosteen peel extract antioxidant, respectively. The activation energy of the mixture of biodiesel B20 and mangosteen peel antioxidant was higher, so that the mixture of biodiesel B20 and antioxidant is more difficult to oxidize.

Keywords

Antioxidant Biodiesel B20 Mangosteen peel Microwave assisted extraction Oxidation 

Notes

Acknowledgments

These experimental works were supported by the Ministry of Research, Technology and Higher Education of the Republic of Indonesia. We would also like to thank Arif Hidayat, Ibnu Inu Setiawan, and Viqi Akhmad Zaenuri for their assistance in collecting the data and doing the extraction and oxidation kinetics modeling.

References

  1. Arnous A, Meyer AS (2010) Discriminated release of phenolic substances from red wine grape skins (Vitis vinifera L.) by multicomponent enzymes treatment discriminated release of phenolic substances from red wine grape skins (Vitis vinifera L.) by multicomponent enzymes treatment. Biochem Eng J 49(1):68–77.  https://doi.org/10.1016/j.bej.2009.11.012 CrossRefGoogle Scholar
  2. Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:1–31.  https://doi.org/10.1155/2014/360438 CrossRefGoogle Scholar
  3. Bagherian H, Ashtiani FZ, Fouladitajar A, Mohtashamy M (2011) Comparisons between conventional, microwave-and ultrasound-assisted methods for extraction of pectin from grapefruit. Chem Eng Process Process Intensif 50(11–12):1237–1243.  https://doi.org/10.1016/j.cep.2011.08.002 CrossRefGoogle Scholar
  4. Barqi WS (2015) Pengambilan minyak mikroalga chlorella sp. dengan metode microwave assisted extraction. Jurnal Bahan Alam Terbarukan:34–41.  https://doi.org/10.15294/jbat.v3i1.5764
  5. Bera D, Lahiri D, Nag A (2006) Studies on a natural antioxidant for stabilization of edible oil and comparison with synthetic antioxidants. J Food Eng 74:542–545.  https://doi.org/10.1016/j.jfoodeng.2005.03.042 CrossRefGoogle Scholar
  6. Borsato D, Galvan D, Pereira LL, Orives JR, Angilelli KG, Coppo R (2014) Kinetic and thermodynamic parameters of biodiesel oxidation with synthetic antioxidants: simplex centroid mixture design. J Braz Chem Soc 25(11):1984–1992.  https://doi.org/10.5935/0103-5053.20140182 CrossRefGoogle Scholar
  7. Bouaid A, Martinez M, Aracil J (2009) Production of biodiesel from bioethanol and Brassica carinata oil: oxidation stability study. Bioresour Technol 100(7):2234–2239.  https://doi.org/10.1016/j.biortech.2008.10.045 CrossRefPubMedGoogle Scholar
  8. BPS (2017) Produksi manggis pada tahun 2016. Badan Pusat StatistikGoogle Scholar
  9. Buanasari, Eden WT, Solichah AI (2017) Extraction of phenolic compounds from petai leaves (Pakia speciosa Hassk) using microwave and ultrasound assisted methods. Jurnal Bahan Alam Terbarukan 6(1):25–31.  https://doi.org/10.15294/jbat.v6i1.7793 CrossRefGoogle Scholar
  10. Chong Y, Chang SK, Chiaw W (2015) Antioxidant efficacy of mangosteen (Garcinia mangostana Linn.) peel extracts in sunflower oil during accelerated storage. Food Biosci 12:18–25.  https://doi.org/10.1016/j.fbio.2015.07.002 CrossRefGoogle Scholar
  11. Chuyen HV, Nguyen MH, Roach PD, Golding JB, Parks SE (2017) Microwave-assisted extraction and ultrasound-assisted extraction for recovering carotenoids from Gac peel and their effects on antioxidant capacity of the extracts. Food Sci Nutr 6(1):189–196.  https://doi.org/10.1002/fsn3.546 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Coppo RL, Borsato D, Pereira JL, Da Silva HC (2013) FAME storage time in an optimized natural antioxidant mixture. J Renew Energy 2013:1–11.  https://doi.org/10.1155/2013/497530 CrossRefGoogle Scholar
  13. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10):7313–7352.  https://doi.org/10.3390/molecules15107313 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Damayanti A, Fitriana EA (2015) Pemungutan minyak astiri mawar (Rose oil) dengan metode maserasi. Jurnal Bahan Alam Terbarukan:14–20.  https://doi.org/10.15294/jbat.v1i2.2543
  15. Dean JR (2009) The grid: extraction techniques in analytical sciences. Wiley, West SussexCrossRefGoogle Scholar
  16. Demirbas A (2009) Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Convers Manag 50(4):923–927.  https://doi.org/10.1016/j.enconman.2008.12.023 CrossRefGoogle Scholar
  17. Fattah IMR, Masjuki HH, Kalam MA, Mofijur M, Abedin MJ (2014) Effect of antioxidant on the performance and emission characteristics of a diesel engine fueled with palm biodiesel blends. Energy Convers Manag 79:265–272.  https://doi.org/10.1016/j.enconman.2013.12.024 CrossRefGoogle Scholar
  18. Fernando CD, Soysa P (2015) Extraction kinetics of phytochemicals and antioxidant activity during black tea (Camellia sinensis L) brewing. J Nutr 14(74):1–7.  https://doi.org/10.1186/s12937-015-0060-x CrossRefGoogle Scholar
  19. Ghasemzadeh A, Jaafar H, Baghdadi A, Tayebi-Meigooni A (2018) Alpha-mangostin-rich extracts from mangosteen pericarp: optimization of green extraction protocol and evaluation of biological activity. Molecules 23(8):1852.  https://doi.org/10.3390/molecules23081852 CrossRefPubMedCentralGoogle Scholar
  20. Gregorio APH, Borsato D, Moreira L, Silva ET, Romagnoli ES, Spacino KR (2017) Apparent activation energy and relative protection factor of natural antioxidants in mixture with biodiesel. Biofuels 8(4):1–8.  https://doi.org/10.1080/17597269.2017.1332297 CrossRefGoogle Scholar
  21. Guo HR, Ma SY, Wang XF, Ren EF, Li YY (2012) Microwave-assisted extraction of chlorophyll from filter mud of sugarcane mill and component analysis. Mater Res Adv 518/523:430–435.  https://doi.org/10.4028/www.scientific.net/AMR.518-523.430 CrossRefGoogle Scholar
  22. Gutierrez-Orozco F, Failla ML (2013) Biological activities and bioavailability of mangosteen xanthones: a critical review of the current evidence. Nutrients 5:3163–3183.  https://doi.org/10.3390/nu5083163 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hadi S (2012) Pengambilan minyak astiri bunga cengkeh (Clove oil) menggunakan pelarut n-heksana dan benzena. Jurnal Bahan Alam Terbarukan 1:25–30.  https://doi.org/10.15294/jbat.v1i2.2546 CrossRefGoogle Scholar
  24. Handayani PA, Juniarti ER (2012) Ekstraksi minyak ketumbar (Coriander oil) dengan pelarut etanol dan n-heksana. Jurnal Bahan Alam Terbarukan 1:1–7.  https://doi.org/10.15294/jbat.v1i1.2538 CrossRefGoogle Scholar
  25. Handayani PA, Nurchayati H (2015) Ekstraksi minyak astiri daun zodia (Evodia suaveolens) dengan metode maserasi dan distilasi air. Jurnal Bahan Alam Terbarukan 3:1–7.  https://doi.org/10.15294/jbat.v3i1.3095 CrossRefGoogle Scholar
  26. Huang D, Zhou H, Lin L (2011) Biodiesel: an alternative to conventional fuel. Energy Proc C 16:1874–1885.  https://doi.org/10.1016/j.egypro.2012.01.287 CrossRefGoogle Scholar
  27. Jung H, Su B, Keller WJ (2006) Antioxidant xanthones from the pericarp of Garcinia mangostana (Mangosteen). J Agric Food Chem 54:2077–2082.  https://doi.org/10.1021/jf052649z CrossRefPubMedGoogle Scholar
  28. Kapoore RV, Butler TO, Pandhal J, Vaidyanathan S (2018) Microwave-assisted extraction for microalgae: from biofuels to biorefinery. Biology 7(1):E18.  https://doi.org/10.3390/biology7010018 CrossRefPubMedGoogle Scholar
  29. Karami Z, Emam-Djomeh Z, Mirzaee HA, Khomeiri M, Mahoonak AS, Aydani E (2015) Optimization of microwave assisted extraction (MAE) and soxhlet extraction of phenolic compound from licorice root. J Food Sci Technol 52(6):3242–3253.  https://doi.org/10.1007/s13197-014-1384-9 CrossRefPubMedGoogle Scholar
  30. Kerem Z, German-Shashoua H, Yarden O (2005) Microwave-assisted extraction of bioactive saponins from chickpea (Cicer arietinum L.). J Sci Food Agric 85(3):406–412.  https://doi.org/10.1002/jsfa.1989 CrossRefGoogle Scholar
  31. Khoo HE, Azlan A, Tang ST, Lim SM (2017) Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 61(1):1361779.  https://doi.org/10.1080/16546628.2017.1361779 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kivevele TT, Huan Z (2013) Effects of antioxidants on the cetane number, viscosity, oxidation stability, and thermal properties of biodiesel produced from nonedible oils. Energy Technol 1(9):537–543.  https://doi.org/10.1002/ente.201300072 CrossRefGoogle Scholar
  33. Knothe G (2007) Some aspects of biodiesel oxidative stability. Fuel Process Technol 88(7):669–677.  https://doi.org/10.1016/j.fuproc.2007.01.005.17 CrossRefGoogle Scholar
  34. Krishnan RY, Rajan KS (2016) Microwave assisted extraction of flavonoids from Terminalia bellerica: study of kinetics and thermodynamics. Sep Purif Technol 157:169–178.  https://doi.org/10.1016/j.seppur.2015.11.035 CrossRefGoogle Scholar
  35. Leung DYC, Koo BCP, Guo Y (2006) Degradation of biodiesel under different storage conditions. Bioresour Technol 97(2):250–256.  https://doi.org/10.1016/j.biortech.2005.02.006 CrossRefPubMedGoogle Scholar
  36. Levenspiel O (1999) Chemical reaction engineering, 3rd edn. Wiley, New YorkGoogle Scholar
  37. Li H, Zeyuan D, Tao W, Rong HL, Steven LW, Rong T (2012) Microwave assisted extraction of phenolics with maximal antioxidant activities in tomatoes. J Food Chem 130:928–936.  https://doi.org/10.1016/j.foodchem.2011.08.019 CrossRefGoogle Scholar
  38. Li Y, Li S, Lin S, Zhang J (2017) Microwave assisted extraction of natural antioxidants from the exotic Gordonia axillaris fruit: optimization and identification of phenolic compounds. Molecules 22(9):1481–1497.  https://doi.org/10.3390/molecules22091481 CrossRefPubMedCentralGoogle Scholar
  39. Mahajan S, Konar SK, Boocock GG (2006) Determining the acid number of biodiesel. J Am Oil Chem Soc 83(6):567–570.  https://doi.org/10.1007/s11746-008-1289-8 CrossRefGoogle Scholar
  40. Maisuthisakul P, Suttajit M, Pongsawatmanit R (2007) Food chemistry assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem 100:1409–1418.  https://doi.org/10.1016/j.foodchem.2005.11.032 CrossRefGoogle Scholar
  41. McCormick RL (2007) The impact of biodiesel on pollutant emissions and public health. Inhal Toxicol 19(12):1033–1039.  https://doi.org/10.1080/08958370701533509 CrossRefPubMedGoogle Scholar
  42. Megawati, Kurniawan RD (2015) Ekstraksi minyak atsiri kulit jeruk manis (Citrus sinensis) dengan metode vacuum microwave assisted hydrodistillation. Jurnal Bahan Alam Terbarukan 4:61–67.  https://doi.org/10.15294/jbat.v4i2.4143 CrossRefGoogle Scholar
  43. Megawati, Saputra DW (2012) Minyak astiri dari kamboja kuning, putih, dan merah dari ekstraksi dengan n-heksana. Jurnal Bahan Alam Terbarukan 1:25–31.  https://doi.org/10.15294/jbat.v1i1.2541 CrossRefGoogle Scholar
  44. Megawati, Ulinuha AY (2015) Ekstraksi pektin kulit buah naga (Dragon fruit) dan aplikasinya sebagai edible film. Jurnal Bahan Alam Terbarukan 3:16–23.  https://doi.org/10.15294/jbat.v3i1.3097 CrossRefGoogle Scholar
  45. Megawati, Wulansarie R, Faiz MB, Adi S, Sammadikun W (2018) Kinetics of microwave assisted extraction of pectin from Balinese orange peel using pseudo-homogeneous model. AIP Conf Proc 1941(020016):1–7.  https://doi.org/10.1063/1.5028074 CrossRefGoogle Scholar
  46. Megawati, Fardhyanti DS, Sediawan WB, Hisyam A (2019) Kinetics of mace (Myristicae arillus) essential oil extraction using microwave assisted hydrodistillation: effect of microwave power. Ind Crops Pro 131:315–322.  https://doi.org/10.1016/j.indcrop.2019.01.067 CrossRefGoogle Scholar
  47. Meini M, Cabezudo I, Boschetti CE, Romanini D (2019) Recovery of phenolic antioxidants from Syrah grape pomace through the optimization of an enzymatic extraction process. Food Chem 283:257–264.  https://doi.org/10.1016/j.foodchem.2019.01.037 CrossRefPubMedGoogle Scholar
  48. Moraes MN, Zabot GL, Prado JM, Meireles AA (2013) Obtaining antioxidants from botanic matrices applying novel extraction techniques. J Food Public Health 3:196–214.  https://doi.org/10.5923/j.fph.20130304.04 CrossRefGoogle Scholar
  49. Naczk M, Towsend M, Zadernowski R, Shahidi F (2011) Protein binding and antioxidant potential of phenolics of mangosteen fruit (Garcinia mangostana). Food Chem 128(2):292–298.  https://doi.org/10.1016/j.foodchem.2011.03.017 CrossRefPubMedGoogle Scholar
  50. Nimse SB, Pal D (2015) Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5:27986–28006.  https://doi.org/10.1039/C4RA13315C CrossRefGoogle Scholar
  51. Olalere OA, Abdurahman HN, Gan CY (2019) Microwave-enhanced extraction and mass spectrometry fingerprints of polyphenolic constituents in Sesamun indicum leaves. Ind Crop Prod 131:151–159.  https://doi.org/10.1016/j.indcrop.2018.12.024 CrossRefGoogle Scholar
  52. Palapol Y, Ketsa S, Stevenson D, Cooney JM, Allan AC, Ferguson IB (2009) Colour development and quality of mangosteen (Garcinia mangostana L) fruit during ripening and after harvest. Postharvest Biol Technol 51:349–353.  https://doi.org/10.1016/j.postharvbio.2008.08.003 CrossRefGoogle Scholar
  53. Pan X, Niu G, Liu H (2003) Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem Eng Process 42(2):129–133.  https://doi.org/10.1016/S0255-2701(02)00037-5 CrossRefGoogle Scholar
  54. Park JY, Kim DK, Lee JP, Park SC, Kim YJ, Lee JS (2008) Blending effects of biodiesels on oxidation stability and low temperature flow properties. Bioresour Technol 99(5):1196–1203.  https://doi.org/10.1016/j.biortech.2007.02.017 CrossRefPubMedGoogle Scholar
  55. Paryanto, Suri AK, Saputro IR (2017) Difusi dan transfer massa pada ekstraksi tanin dari buah mangrove (Rhizhopora stylosa). Jurnal Rekayasa Bahan Alam dan Energi Berkelanjutan 1:42–48.  https://doi.org/10.21776/ub.rbaet.2017.001.02.01 CrossRefGoogle Scholar
  56. Pereira GG, Morales A, Marmesat S, Ruiz-Mendez MV, Barrera-Arellano D, Dobarganes MC (2015) Effect of temperature on the oxidation of soybean biodiesel. Grasas Aceites 66(2):e072.  https://doi.org/10.3989/gya.0835142 CrossRefGoogle Scholar
  57. Puri M, Sharma D, Barrow CJ (2012) Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol 30(1):37–44.  https://doi.org/10.1016/j.tibtech.2011.06.014 CrossRefPubMedGoogle Scholar
  58. Ramalingam S, Rajendran S, Ganesan P, Govindasamy M (2018) Effect of operating parameters and antioxidant additives with biodiesels to improve the performance and reducing the emissions in a compression ignition engine – a review. Renew Sust Energ Rev 81:775–788.  https://doi.org/10.1016/j.rser.2017.08.026 CrossRefGoogle Scholar
  59. Ramaswamy HS, Marcotte M (2008) The grid: food processing: principles and applications. Taylor, FrancisGoogle Scholar
  60. Sayyar S, Abidin ZZ, Yunus R, Muhammad A (2009) Extraction of oil from jatropha seeds optimization and kinetics. Am J Appl Sci 6(7):1390–1395.  https://doi.org/10.3844/ajassp.2009.1390.1395 CrossRefGoogle Scholar
  61. Scott Fogler H (2016) The grid: elements of chemical reaction engineering, 5th ed. Prentice HallGoogle Scholar
  62. Spacino KR, Dionisio B, Gabriela MB, Leticia TC (2015) Determination of kinetic and thermodynamic parameters of the B100 biodiesel oxidation process in mixtures with natural antioxidant. J Fuel Proc Technol 137:366–370.  https://doi.org/10.1016/j.fuproc.2015.05.006 CrossRefGoogle Scholar
  63. Spacino KR, Silva ET, Angilelli K (2016) Relative protection factor optimisation of natural antioxidants in biodiesel B100. Ind Crop Prod 80:109–114.  https://doi.org/10.1016/j.indcrop.2015.11.034 CrossRefGoogle Scholar
  64. Sun J, Wang F, Sui Y, She Z, Zhai W, Wang C, Deng Y (2012) Effect of particle size on solubility, dissolution rate, and oral bioavailability: evaluation using coenzyme Q10 as naked nanocrystals. Int J Nanomedicine 7:5733–5744.  https://doi.org/10.2147/IJN.S34365 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Suttirak W, Manurakchinakorn S (2012) In vitro antioxidant properties of mangosteen peel extract. J Food Sci Technol 51(12):3546–3558.  https://doi.org/10.1007/s13197-012-0887-5 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Thirugnanasambandham K, Sivakumar V (2017) Microwave assisted extraction process of betalain from dragon fuit and its antioxidant activities. J Saudi Soc Agric Sci 16(1):41–48.  https://doi.org/10.1016/j.jssas.2015.02.001 CrossRefGoogle Scholar
  67. Tjahjani S, Widowati W, Khiong K (2014) Antioxidant properties of Garcinia mangostana L. (Mangosteen) rind. Proc Chem 13:198–203.  https://doi.org/10.1016/j.proche.2014.12.027 CrossRefGoogle Scholar
  68. Uslu N, Ozcan MM (2017) Effect of microwave heating on phenolic compounds and fatty acid compositions of cashew (Anacardium occidentale). J Saudi Soc Agric Sci.  https://doi.org/10.1016/j.jssas.2017.10.001
  69. Walker EB (2007) HPLC analysis of selected xanthones in mangosteen fruit. J Sep Sci 30(9):1229–1234.  https://doi.org/10.1002/jssc.200700024 CrossRefPubMedGoogle Scholar
  70. Warsi Z, Sholichah AR (2017) Phytochemical screening and antioxidant activity of ethanolic extract and ethyl acetate fraction from basil leaf (Ocimum basilicum L) by DPPH radical scavenging method. In: IOP Conference Proceeding. IOP Conf Series: Materials Science and Engineering 259:012008.  https://doi.org/10.1088/1757-899X/259/1/012008
  71. Wibawanti J, Zulfanita Z, Runanto D (2019) The antioxidant activity of yogurt drink by mangosteen rind extract (Garcinia mangostana L). J Appl Food Technol 6(1):15–18.  https://doi.org/10.17728/jaft.4267 CrossRefGoogle Scholar
  72. Widyastuti CR, Dewi AC (2015) Sintesis biodiesel dari minyak mikroalga Chlorella vulgaris dengan reaksi transesterifikasi menggunakan katalis KOH. Jurnal Bahan Alam Terbarukan 4(1):29–33.  https://doi.org/10.15294/jbat.v3i1.3099 CrossRefGoogle Scholar
  73. Xin J, Imahara H, Saka S (2009) Kinetics on the oxidation of biodiesel stabilized with antioxidant. J Fuel 88(2):282–286.  https://doi.org/10.1016/j.fuel.2008.08.018 CrossRefGoogle Scholar
  74. Zalacain A, Prodanov M, Carmona M, Alonso GL Optimisation of extraction and identification of gallotannins from sumac leaves. Biosyst Eng 84(2):211–216.  https://doi.org/10.1016/S1537-5110(02)00246-5
  75. Zarena AS, Udaya Sankar K (2009) Supercritical carbon dioxide extraction of xanthones with antioxidant activity from Garcinia mangostana characterization by HPLC/LC–ESI-MS. J Supercrit Fluid 49:330–337.  https://doi.org/10.1016/j.supflu.2009.03.004 CrossRefGoogle Scholar
  76. Zarena AS, Udaya Sankar K (2011) Xanthones enriched extracts from mangosteen pericarp obtained by supercritical carbon dioxide process. Separ Purif Technol 80:172–178.  https://doi.org/10.1016/j.seppur.2011.04.027 CrossRefGoogle Scholar
  77. Zhang QW, Lin LG, Ye WC (2018a) Techniques for extraction and isolation of natural products: a comprehensive review. Chin Med 13:20.  https://doi.org/10.1186/s13020-018-0177-x CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zhang JJ, Li Y, Lin SJ, Li HB (2018b) Green extraction of natural antioxidants from the sterculia nobilis fruit waste and analysis of phenolic profile. Molecules 23(5):1059.  https://doi.org/10.3390/molecules23051059 CrossRefPubMedCentralGoogle Scholar
  79. Zhou L (2013) The grid: reaction kinetics of biodiesel production by using low quality feedstock. Thesis, University of ReginaGoogle Scholar
  80. Ziaedini A, Jafari A, Zakeri A (2010) Extraction of antioxidants and caffeine from green tea (Camelia sinensis) leaves: kinetics and modeling. Food Sci Technol Int 16(6):505–510.  https://doi.org/10.1177/1082013210367567 CrossRefPubMedGoogle Scholar
  81. Zigoneanu IG, Williams L, Xu Z, Sabliov CM (2008) Determination of antioxidant components in rice bran oil extracted by microwave-assisted method. Bioresour Technol 99(11):4910–4918.  https://doi.org/10.1016/j.biortech.2007.09.067 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Megawati
    • 1
    Email author
  • Rizqy Romadhona Ginting
    • 2
  • Ratna Dewi Kusumaningtyas
    • 1
  • Wahyudi Budi Sediawan
    • 3
  1. 1.Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri SemarangSemarangIndonesia
  2. 2.Department of Chemical Engineering, Graduate School of Engineering, Faculty of EngineeringUniversitas Gadjah MadaHiroshimaJapan
  3. 3.Department of Chemical Engineering, Faculty of EngineeringUniversitas Gadjah MadaYogyakartaIndonesia

Personalised recommendations