Pretreatment and Enzymatic Hydrolysis of Lignocellulosic Biomass for Reducing Sugar Production

  • Noor Idayu Nashiruddin
  • Nor Hasmaliana Abdul Manas
  • Roshanida A. RahmanEmail author
  • Nur Izyan Wan Azelee
  • Daniel Joe Dailin
  • Shalyda Md Shaarani
Part of the Applied Environmental Science and Engineering for a Sustainable Future book series (AESE)


Conversion of lignocellulosic biomass into reducing sugar has contributed to an alternative use of lignocellulose source, especially in the production of value-added products such as amino acids, biofuels, and vitamins. In the bioconversion process, pretreatment of lignocellulosic biomass is important to enhance the accessibility of enzyme hydrolysis, thus increasing the yield of reducing sugar. Lignocellulosic biomass has a very complex arrangement of structure that needs a proper study in pretreatment and enzymatic hydrolysis process to obtain an optimum yield of reducing sugar. This chapter discusses chemical and enzymatic pretreatment methods that are commonly applied to effectively modify the chemical structures of lignocellulosic biomass. Acid pretreatment using dilute sulfuric acid (H2SO4) is the most commonly employed for chemical pretreatment while sodium hydroxide (NaOH) is the most commonly applied for alkaline pretreatment because of its ability to delignify biomass. Then, enzymatic hydrolysis of lignocellulosic biomass for the production of reducing sugar is discussed in detail. The kinetics and optimization of hydrolysis which are the key parameters that determine the yields of reducing sugar are also presented. The right pretreatment method combined with an efficient hydrolysis process will ensure successful conversion of lignocellulosic biomass into reducing sugar, thus providing a sustainable production of reducing sugar from biomass for various applications.


Lignocellulosic biomass Pretreatment Enzymatic hydrolysis Reducing sugar Kinetic 


  1. Alvira P, Tomás-Pejó E, Ballesteros M, Nergo MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861CrossRefGoogle Scholar
  2. Anwar Z, Gulfraz M, Imran M, Asad MJ, Shafi AI, Anwar P, Qureshi R (2012) Optimization of dilute acid pretreatment using response surface methodology for bioethanol production from cellulosic biomass of rice polis. Pak J Bot 44(1):169–176Google Scholar
  3. Asim M, Abdan K, Jawaid M, Nasir M, Dashtizadeh Z, Ishak MR, Enamul Hoque M (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 2015:1–16CrossRefGoogle Scholar
  4. Avila-Lara AI, Camberos-Flores JN, Mendoza-Perez JA, Messina-Fernandez SR, Saldana-Duran CE, Jimenez-Ruiz EI, Sanchez-Herrera LM, Perez-Pimienta JA (2015) Optimization of alkaline and dilute acid pretreatment of agave bagasse by response surface methodology. Front Bioeng Biotechnol 3(146):1–10Google Scholar
  5. Baboukani BS, Vossoughi M, Alemzadeh I (2012) Optimisation of dilute acid pretreatment conditions for enhancement sugar recovery and enzymatic hydrolysis of wheat straw. Biosyst Eng 111:66–174Google Scholar
  6. Badal CS (2003) Hemicellulose conversion. J Ind Microbiol Biotechnol 30:279–291CrossRefGoogle Scholar
  7. Baley (1989) Enzyme kinetics of cellulose hydrolysis. Biochem J 262:1001–1002CrossRefGoogle Scholar
  8. Ballesteros I, Negro M, Oliva JM, Cabanas A, Manzanares P, Ballesteros M (2006) Ethanol production from steam explosion pretreated wheat straw. Appl Biochem Biotechnol 130:278–288CrossRefGoogle Scholar
  9. Banerjee S, Mudliar S, Giri B, Sarpute D, Chakrabarti T, Pandey RA (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels Bioprod Biorefin 4:77–93CrossRefGoogle Scholar
  10. Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2009) Modelling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 27:833–848CrossRefPubMedGoogle Scholar
  11. Barakat A, de Vries H, Rouao X (2013) Dry fractionation process as an important step in current and future lignocellulose biorefineries: a review. Bioresour Technol 134:362–373CrossRefPubMedGoogle Scholar
  12. Ben Taher I, Fickers P, Chniti S, Hassouna M (2017) Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues. Biotechnol Prog 33(2):397–406. CrossRefPubMedGoogle Scholar
  13. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977CrossRefGoogle Scholar
  14. Bobleter O, Niesner R, Rohr M (1976) The hydrothermal degradation of cellulosic matter to sugars and their fermentative conversion to protein. J Appl Polym Sci 20:2083–2093CrossRefGoogle Scholar
  15. Cai D, Li P, Luo Z, Qin P, Chen C, Wang Y, Wang Z, Tan T (2016) Effect of dilute alkaline pretreatment on the conversion of different parts of corn stalk to fermentable sugars and its application in acetone-butanol-ethanol fermentation. Bioresour Technol 211:117–124CrossRefGoogle Scholar
  16. Carillo F, Lis MJ, Colom X, López-Mesas M, Valldeperas J (2005) Effect of alkali pretreatment on cellulose hydrolysis of wheat straw: kinetic study. Process Biochem 40:3360–3364CrossRefGoogle Scholar
  17. Carvalho ML, Sousa RJ, Rodríguez-Zúñiga UF, Suarez CAG, Rodrigues DS, Giordano RC, Giordano RLC (2013) Kinetic study of the enzymatic hydrolysis of sugarcane bagasse. Braz J Chem Eng 30(3):437–447CrossRefGoogle Scholar
  18. Chang MCY (2007) Harnessing energy from plant biomass. Curr Opin Chem Biol 11:677–684CrossRefGoogle Scholar
  19. Chapla D, Pandit P, Shah A (2011) Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotic. Bioresour Technol 15:215–221Google Scholar
  20. Chen H (2014) Chemical composition and structure of natural lignocellulose. In: Biotechnology of lignocellulose: theory and practice. Springer, Beijing, pp 25–71CrossRefGoogle Scholar
  21. Chen M, Xia LM, Xue PJ (2007) Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. Int Biodeterior Biodegrad 59:85–89CrossRefGoogle Scholar
  22. Chen WH, Pen BL, Yu C, Hwang WS (2011) Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute acid and steam explosion for bioethanol production. Bioresour Technol 102:2916–2924CrossRefPubMedGoogle Scholar
  23. Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H (2013) Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol Biofuels 6(8):1–10PubMedPubMedCentralGoogle Scholar
  24. Cheung SW, Anderson BC (1997) Laboratory investigation of ethanol production from municipal primary wastewater. Bioresour Technol 59:81–96CrossRefGoogle Scholar
  25. Chittibabu S, Saseetharan MK, Rajendran K, Santhanamuthu (2012) Optimization of alkali pretreatment and enzymatic hydrolysis of banana pseudostem for ethanol production by RSM. In: International conference on advanced in engineering, science and management, 30–31 March. India. IEEE, pp 90–94Google Scholar
  26. Choi W, Oh K, Park J, Lee J (2014) Continuous sodium hydroxide catalyzed pretreatment of empty fruit bunches (EFB) by continuous twin-screw-driven reactor (CTSR). J Chem Technol Biotechnol 89(2):209–296Google Scholar
  27. Chrastil J (1988) Enzymic product formation curves with the normal or diffusion limited reaction mechanism and in the presence of substrate receptors. Int J Biochem 20(7):683–693CrossRefPubMedGoogle Scholar
  28. Cotano F, Barbanera M, Foschini D, Lascaro E, Buratti C (2015) Preliminary optimization of alkaline pretreatment for ethanol production from vineyard pruning. Energy Procedia 82:389–394CrossRefGoogle Scholar
  29. Daud Z, Mohd Hatta MZ, Mohd Kassim AS, Mohd Aripin A (2014) Analysis of the chemical composition and fiber morphology of pineapple (Ananas comosus) leaves in Malaysia. J Appl Sci 14(12):1355–1358CrossRefGoogle Scholar
  30. Dussan KJ, Silva DDV, Moraes EJC, Arruda PV, Felipe MGA (2014) Dilute-acid hydrolysis of cellulose to glucose from sugarcane bagasse. Chem Eng Trans 38:433–438Google Scholar
  31. El-Zawawy WK, Ibrahim MM, Abdel-Fattah YR, Soliman NA, Mahmoud MM (2011) Acid and enzyme hydrolysis to convert pretreated lignocellulosic materials into glucose for ethanol production. Carbohydr Polym 84:865–871CrossRefGoogle Scholar
  32. Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, Silva EGP, Portugal LA, Reis PS, Souza AS, Santos WNL (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ferreira S, Duarte AP, Ribeiro MHL, Queiroz JA, Domingues FC (2009) Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochem Eng J 45:192–200CrossRefGoogle Scholar
  34. Ganesh DS, Min-Kyu O (2015) Improving alkaline pretreatment method for preparation of whole rice waste biomass feedstock and bioethanol production. RSC Adv 5:97171–97179CrossRefGoogle Scholar
  35. Goncalves FA, Ruiz HA, Santos ES, Teixeira JA, de Macedo GR (2015) Bioethanol production from coconuts and cactus pretreated by autohydrolysis. Ind Crop Prod 77:1–12CrossRefGoogle Scholar
  36. Gottschalk LMF, Oliveira RO, Bon EPS (2010) Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Tricoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse. Biochem Eng J 51:72–78CrossRefGoogle Scholar
  37. Gregg DJ, Saddler JN (1996) Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnol Bioeng 51:375–383CrossRefPubMedPubMedCentralGoogle Scholar
  38. Guan X, Yao H (2008) Optimization of viscozyme L-assisted extraction of Oat Bran protein using response surface methodology. Food Chem 106(1):345–351CrossRefGoogle Scholar
  39. Hong E, Kim D, Kim J, Yoon S, Rhie S, Ha S, Ryu Y (2015) Optimization of alkaline pretreatment on corn stover for enhanced production of 1.3-propanediol and 2,3-butanediol by Klebsiella pneumaniae AJ 4. Biomass Bioenergy 77:177–185CrossRefGoogle Scholar
  40. Howard RL, Abotsi E, Jansen van Rensburg EL, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2(12):602–619CrossRefGoogle Scholar
  41. Hsu TGL, Guo GL, Chen WH, Hwang WS (2010) Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour Technol 101:4907–4913CrossRefPubMedPubMedCentralGoogle Scholar
  42. Idrees M, Adnan A, Sheikh S, Qureshic FA (2013) Optimization of dilute acid pretreatment of water hyacinth biomass for enzymatic hydrolysis and ethanol production. EXCLI J 12:30–40PubMedPubMedCentralGoogle Scholar
  43. Iwona C, Grzegorz B, Hanwu L (2013) Hydrothermal pretreatment of lignocellulosic biomass. In: Gu Y (ed) Green biomass pretreatment for biofuel production. Springer, New York, pp 87–106Google Scholar
  44. Jacobsen SE, Wyman CE (2000) Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. Appl Biochem Biotechnol 84–86:81–96CrossRefPubMedPubMedCentralGoogle Scholar
  45. Jeong SY, Lee JW (2015) Hydrothermal pretreatment. In: Ashok P, Sangeeta N, Parameswaran B, Christian L (eds) Pretreatment of biomass: processes and technologie. Elsevier, India, pp 61–74CrossRefGoogle Scholar
  46. Jeya M, Zhang YW, Kim IW, Lee JK (2009) Enhanced saccharification of alkali-treated rice straw by cellulase from trametes hirsute and statistical optimization of hydrolysis conditions by RSM. Bioresour Technol 100:5155–5161CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kadam KL, Rydholm EC, McMillan JD (2004) Development and of a kinetic model for enzymatic saccharification of lignocellulosic biomass. Biotechol Prog 20:698–705CrossRefGoogle Scholar
  48. Karunanithy C, Muthukumarappan K (2011) Optimization of alkali, big bluestem particle size, and extruder parameters for maximum enzymatic sugar recovery using response surface methodology. Bioresources 6(1):762–790Google Scholar
  49. Kaur S, Sarkar C, Sharma HK, Singh C (2009) Optimization of enzymatic hydrolysis pretreatment conditions for enhanced juice recovery from guava fruit using response surface methodology. Food Bioprocess Technol 2:96–100CrossRefGoogle Scholar
  50. Kim I, Han J-I (2012) Optimization of alkaline pretreatment conditions for enhancing glucose yield of rice straw by response surface methodology. Biomass Bioenergy 46:210–217CrossRefGoogle Scholar
  51. Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kshirsagar SD, Wagmare OR, Loni PC, Patil SA, Govindwar SP (2015) Dilute acid pretreatment of rice straw, structural characterization and optimization of enzymatic hydrolysis condition by response surface methodology. RSC Adv 5:46525–46533CrossRefGoogle Scholar
  53. Kumar R, Wyman CE (2009) Effect of xylanase supplementation of cellulose on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kumar P, Barrett DM, Delwiches MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRefGoogle Scholar
  55. Lee JM, Shi J, Venditti RA, Jameel H (2009) Autohydrolysis pretreatment of costal Bermuda grass for increased enzyme hydrolysis. Bioresour Technol 100:6364–6441Google Scholar
  56. Lee JM, Jameel H, Venditti R (2010) Effect of Ozone and autohydrolysis pretreatment on enzymatic digestibility of coastal Bermuda grass. Bioresources 5(2):1084–1101Google Scholar
  57. Lei H, Cybulska I, Julson J (2013) Hydrothermal pretreatment of lignocellulosic biomass and kinetics. J Sustain Bioenergy Syst 3:250–259CrossRefGoogle Scholar
  58. Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156:395–403CrossRefGoogle Scholar
  59. Li C, Yoshimoto M, Tsukuda N, Fukunaga K, Nakao K (2004) A kinetic study on enzymatic hydrolysis of a variety of pulps for its enhancement with continuous ultrasonic irradiation. Biochem Eng J 19(2):155–164CrossRefGoogle Scholar
  60. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33CrossRefGoogle Scholar
  61. Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification, and enzymatic saccharification. Bioresour Technol 101:4900–4906CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lu XB, Zhang YM, Yang J, Liang Y (2007) Enzymatic hydrolysis of corn stover after pretreatment with dilute sulphuric acid. Chem Eng Technol 30(7):938–944CrossRefGoogle Scholar
  63. Maeda RN, Serpa VI, Rocha VAL, Mesquita RAA, Anna LMMS, Castro AM, Driemeier CE, Pereira N, Polikarpov I (2011) Enzymatic hydrolysis of pretreated sugarcane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochem 46:1196–1201CrossRefGoogle Scholar
  64. Maitan-Alfenas GP, Visser EM, Guimaraes VM (2015) Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr Opin Food Sci 1:44–49CrossRefGoogle Scholar
  65. Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids – a review. Ind Crop Prod 32(3):175–201CrossRefGoogle Scholar
  66. Malaysia Palm Oil Board (MPOB) (2011) Oil palm statistic, 21, pp 131Google Scholar
  67. Manimaran A, Vijai KG, Finola EC, Maria GT (2013) Enzymatic saccharification of lignocellulosic biomass. In Gupta VK (eds) Laboratory protocols in fungal biology: current methods in fungal biology, pp 475–481Google Scholar
  68. MAO (Ministry of Agriculture) Hectareage of industrial crops by types, Malaysia (2006) [Online]. Available from
  69. Martin C, Klinke HB, Thomsen AB (2007) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microb Technol 40:426–432CrossRefGoogle Scholar
  70. McIntosh S, Vancov T (2010) Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkaline pretreatment. Bioresour Technol 101(17):6718–6727CrossRefPubMedPubMedCentralGoogle Scholar
  71. Mishra S, Mohanty AK, Drzal LT, Misra M, Hinrichsen G (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289:955–974CrossRefGoogle Scholar
  72. Mohamad Said KA, Mohamed Amin MA (2015) Overview on the response surface methodology (RSM) in extraction processes. J Appl Sci Proc Eng 2(1):8–17Google Scholar
  73. Mohd Sukri SS, Rahman RA, Md Illias R, Yaakob H (2014) Optimization of alkaline pretreatment condition of oil palm fronds in improving the lignocelluloses contents for reducing sugar production. Rom Biotechnol Lett 19(1):9006–9018Google Scholar
  74. Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93CrossRefGoogle Scholar
  75. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRefPubMedPubMedCentralGoogle Scholar
  76. Nigam PS, Gupta N, Anthwal A (2009) Pretreatment of agro-industrial residues. In: Nigam PS, Pandey A (eds) Biotechnology for agro-industrial residues utilization. Springer, The Hague, pp 13–33CrossRefGoogle Scholar
  77. Nlewen KC, Thrash J (2010) Comparison of different pretreatment methods based on residual lignin effect on the enzymatic hydrolysis of switchgrass. Bioresour Technol 101:5426–5430CrossRefGoogle Scholar
  78. Pandiyan K, Tiwari R, Singh S, Pawan KSN, Rana S, Arora A, Singh SB, Lata N (2014) Optimization of enzymatic saccharification of alkali pretreated Parthenium sp. using response surface methodology. Hindawi Publishing Corporation, 2014, pp 1–14Google Scholar
  79. Parameswaran B, Ashok P (2015) Introduction: lignocellulosic biomass. In: Ashok P, Sangeeta N, Parameswaran B, Christian L (eds) Pretreatment of biomass: processes and technologies. Elsevier, India, pp 3–6Google Scholar
  80. Pratto B, de Souza RB, Sousa RJ, da Cruz AJ (2016) Enzymatic hydrolysis of pretreated sugarcane straw: kinetic study and semi-mechanistic modelling. Appl Biochem Biotechnol 178:1430–1444CrossRefGoogle Scholar
  81. Qi B, Chen X, Shen F, Su Y, Wan Y (2009) Optimization of enzymatic hydrolysis of wheat straw pretreated by alkaline peroxide using response surface methodology. Ind Eng Chem Res 4:7346–7353CrossRefGoogle Scholar
  82. Rabemanolontsoa H, Saka S (2016) Various pretreatment of lignocellulosic. Bioresour Technol 199:83081CrossRefGoogle Scholar
  83. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489CrossRefGoogle Scholar
  84. Raveendran S, Ashok P, Parameswaran B (2015) Alkaline pretreatment. In: Ashok P, Sangeeta N, Parameswaran B, Christian L (eds) Pretreatment of biomass: processes and technologies. Elsevier, India, pp 51–60Google Scholar
  85. Rawat R, Kumbhar BK, Tewari L (2013) Optimization of alkali pretreatment for bioconversion of poplar (Populus deltoides) biomass into fermentable sugars using response surface methodology. Ind Crop Prod 44:220–226CrossRefGoogle Scholar
  86. Roberto IC, Mussatto SI, Rodrigues RCLB (2003) Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a SemiPilot reactor. Ind Crop Prod 17:171–176CrossRefGoogle Scholar
  87. Romaní A, Garrote G, Parajó JC (2012) Bioethanol production from autohydrolyzed Eucalyptus globulus by simultaneous saccharification and fermentation operating at high solids loading. Fuel 94:305–312CrossRefGoogle Scholar
  88. Ruangmee A, Sangwichien C (2013) Response surface optimization of enzymatic hydrolysis of narrow-leaf cattail for bioethanol production. Energy Convers Manag 73:381–388CrossRefGoogle Scholar
  89. Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sustain Energy Rev 21:35–31CrossRefGoogle Scholar
  90. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700CrossRefGoogle Scholar
  91. Saini JK, Anurag RK, Arya A, Kumbhar BK, Tewari L (2012) Optimization of saccharification of sweet sorghum bagasse using response surface methodology. Ind Crop Prod 4:211–219Google Scholar
  92. Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–195CrossRefPubMedGoogle Scholar
  93. Selig MJ, Viamajala S, Decker SR, Tuker MP, Himmel ME (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23:1333–1339CrossRefPubMedGoogle Scholar
  94. Shawkataly HPAK, Mohamed SA, Abdul Kadir MO (2006) Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. Bioresources 1(2):220–232Google Scholar
  95. Singh A, Bishnoi NR (2011a) Enzymatic hydrolysis optimization of microwave alkali pretreated wheat straw and ethanol production by yeast. Bioresour Technol 108:94–101CrossRefPubMedGoogle Scholar
  96. Singh A, Bishnoi NR (2011b) Enzymatic hydrolysis optimization of microwave alkali pretreated wheat straw and ethanol production by yeast. Bioresour Technol 108:94–101CrossRefPubMedGoogle Scholar
  97. Singh A, Bishnoi NR (2012) Optimization of enzymatic hydrolysis of pretreated rice straw and ethanol production. Appl Microbiol Biotehnol 93(4):1785–1793. CrossRefGoogle Scholar
  98. Sousa RJ, Carvalho ML, Giordano RLC, Giordano RC (2011) Recent trends in the modelling of cellulose hydrolysis. Braz J Chem Eng 28:545–564CrossRefGoogle Scholar
  99. Suhas, Gupta VK, Carrott PJM, Randhir S, Monika C, Sarita K (2016) Cellulose: a review as natural, modified, and activated carbon adsorbent. Bioresour Technol 216:1066–1076CrossRefPubMedGoogle Scholar
  100. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRefPubMedGoogle Scholar
  101. Sun Y, Cheng JJ (2005) Dilute acid pretreatment of rye straw and Bermuda grass for ethanol production. Bioresour Technol 96(14):1599–1606CrossRefPubMedGoogle Scholar
  102. Sun N, Rodríguez H, Rahman M, Rogers RD (2011) Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem Commun 47:1405–1421CrossRefGoogle Scholar
  103. Taj S, Munawar AM, Shafiullah K (2007) Natural fiber-reinforced polymer composites. Proc Pakistan Acad Sci 44(2):129–144Google Scholar
  104. Thirmal C, Dahman Y (2012) Comparison of existing pretreatment, saccharification, and fermentation process for butanol production from agricultural residues. Can J Chem Eng 90:745–761CrossRefGoogle Scholar
  105. Timung R, Mohan M, Chilukoti B, Samsal S, Banerjee T, Goud VV (2015) Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: a comparative study. Biomass Bioenergy 8:9–18CrossRefGoogle Scholar
  106. Umagiliyage AL, Choudary R, Liang Y, Haddock J, Watson DG (2015) Laboratory scale optimization of alkali pretreatment for improving enzymatic hydrolysis of sweet sorghum bagasse. Ind Crop Prod 74:977–986CrossRefGoogle Scholar
  107. Uzunlu N, Hoshun EZ, Bozan B (2014) Optimization of alkaline pretreatment for enzymatic saccharification of poppy stalks. Bioresources 9(2):2824–2834CrossRefGoogle Scholar
  108. Van Wyk JP (2001) Biotechnology and the utilization of biowaste as a resource for bioproduct development. Trends Biotechnol 19(5):172–177CrossRefPubMedGoogle Scholar
  109. Visioli LJ, Enzweiler H, Kuhn RC, Schwaab M, Mazutti MA (2014) Recent advances on biobutanol production. Sustain Chem Process 2(15):1–9Google Scholar
  110. Weerachanchai P, Jan Leong SS, Chang MW, Ching CB, Lee JM (2012) Improvement of biomass properties by pretreatment with ionic liquids for bioconversion process. Bioresour Technol 111:453–459CrossRefPubMedPubMedCentralGoogle Scholar
  111. Wilfred V (2008) Composition and biosynthesis of lignocellulosic biomass. In: Wilfred V (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 89–129Google Scholar
  112. Xu JL, Cheng JJ, Sharma-Shivappa RR, Burns JC (2010) Sodium hydroxide pretreatment of switchgrass for ethanol production. Energy Fuel 24:2113–2119CrossRefGoogle Scholar
  113. Young HJ, Kyoung HK (2015) Acidic pretreatment. In: Ashok P, Sangeeta N, Parameswaran B, Christian L (eds) Pretreatment of biomass: processes and technologies. Elsevier, India, pp 27–50Google Scholar
  114. Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–33CrossRefPubMedPubMedCentralGoogle Scholar
  115. Zhao XB, Wang L, Liu DH (2007) Effect of several factors on peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis. J Chem Technol Biotechnol 82:1115–1121CrossRefGoogle Scholar
  116. Zhou CH, Xia X, Lin CX, Tong DS, Beltramini J (2011) Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem Soc Rev 40(11):5588–5617CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Noor Idayu Nashiruddin
    • 1
  • Nor Hasmaliana Abdul Manas
    • 1
  • Roshanida A. Rahman
    • 1
    Email author
  • Nur Izyan Wan Azelee
    • 1
  • Daniel Joe Dailin
    • 1
    • 2
  • Shalyda Md Shaarani
    • 3
  1. 1.School of Chemical and Energy Engineering, Universiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Institute of Bioproduct Development, Universiti Teknologi MalaysiaSkudaiMalaysia
  3. 3.Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia PahangKuantanMalaysia

Personalised recommendations