Advertisement

Many-Parameter Quaternion Fourier Transforms for Intelligent OFDM Telecommunication System

  • Valeriy G. LabunetsEmail author
  • Ekaterina Ostheimer
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1126)

Abstract

In this paper, we aim to investigate the superiority and practicability of many-parameter quaternion Fourier transforms (MPQFT) from the physical layer security (PHY-LS) perspective. We propose novel Intelligent OFDM-telecommunication system (Intelligent-OFDM-TCS), based on MPFT. New system uses inverse MPQFT for modulation at the transmitter and direct MPQFT for demodulation at the receiver. The purpose of employing the MPFTs is to improve the PHY-LS of wireless transmissions against to the wide-band anti-jamming communication. Each MPQFT depends on finite set of independent parameters (angles), which could be changed independently one from another. When parameters are changed, multi-parametric transform is also changed taking form of a set known (and unknown) orthogonal (or unitary) transforms. We implement the following performances as bit error rate (BER), symbol error rate (SER), the Shannon-Wyner secrecy capacity (SWSC) for novel Intelligent-MPWT-OFDM-TCS. Simulation results show that the proposed Intelligent OFDM-TCS have better performances than the conventional OFDM system based on DFT against eavesdropping

Keywords

Many-parameter transforms Quaternion fourier transform OFDM Telecommunication system Anti-eavesdropping communication 

Notes

Acknowledgements

The reported study was funded by RFBR, project number 19-29-09022-мк and by the Ural State Forest Engineering’s Center of Excellence in «Quantum and Classical Information Technologies for Remote Sensing Systemsю.

References

  1. 1.
    Gupta, M.K., Tiwari, S.: Performance evaluation of conventional and wavelet based OFDM system. Int. J. Electron. Commun. 67(4), 348–354 (2013)CrossRefGoogle Scholar
  2. 2.
    Patchala, S., Sailaja, M.: Analysis of filter bank multi-carrier system for 5G communications. Int. J. Wirel. Microw. Technol. (IJWMT) 9(4), 39–50 (2019)CrossRefGoogle Scholar
  3. 3.
    Kaur, H., Kumar, M., Sharma, A.K., Singh, H.P.: Performance analysis of different Wavelet families over fading environments for mobile WiMax system. Int. J. Future Gener. Commun. Netw. 8, 87–98 (2015)CrossRefGoogle Scholar
  4. 4.
    Davis, J.A., Jedwab, J.: Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes. IEEE Trans. Inf. Theory 45, 2397–2417 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Michailow, N., Mendes, L., Matthe, M., Festag, I., Fettweis, A., Robust, G.: WHT-GFDM for the next generation of wireless networks. IEEE Commun. Lett. 19, 106–109 (2015)CrossRefGoogle Scholar
  6. 6.
    Manhas, P., Soni, M.K.: Comparison of OFDM system in terms of BER using different transform and channel coding. Int. J. Eng. Manuf. 1, 28–34 (2016)Google Scholar
  7. 7.
    Hamilton, W.R.: Elements of Quaternions, p. 242. Chelsea Pub. Com., New York (1969)Google Scholar
  8. 8.
    Ward, J.P.: Quaternions and Cayley Numbers: Algebra and Applications, p. 218. Kluwer Academic Publishers, Dordrecht (1997)CrossRefGoogle Scholar
  9. 9.
    Labunets, V.G.: Quaternion number–theoretical transform. In: Devices and Methods of Experimental Investigations in Automation, pp. 28–33. Dnepropetrovsk State University Press, Dnepropetrovsk (1981). (In Russian)Google Scholar
  10. 10.
    Sommen, F.: A product and an exponential function in hypercomplex function theory. Appl. Anal. 12, 13–26 (1981)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Sommen, F.: Hypercomplex Fourier and Laplace transforms I. Ill. J. Math. 26(2), 332–352 (1982)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ernst, R.R., Bodenhausen, G., Wokaun, A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions. International Series of Monographs on Chemistry, p. 610. Oxford University Press, Oxford (1987)Google Scholar
  13. 13.
    Delsuc, M.A.: Spectral representation of 2D NMR spectra by hypercomplex numbers. J. Magn. Reson. 77(1), 119–124 (1969)Google Scholar
  14. 14.
    Rundblad–Labunets, E., Labunets, V., Astola, J., Egiazarian, K.: Fast fractional Fourier–Clifford transforms. In: Second International Workshop on Transforms and Filter Banks. TICSP Series, Tampere, Finland, no. 5, pp. 376–405 (1999)Google Scholar
  15. 15.
    Sangwine, S.J., Ell, T.A.: The discrete Fourier transform of a colour image. In: Blackledge, J.M., Turner, M.J. (eds.) Image Processing II Mathematical Methods, Algorithms and Applications, pp. 430–441 (1998)Google Scholar
  16. 16.
    Labunets-Rundblad, E.: Fast Fourier-Clifford transforms design and application in invariant recognition. Ph.D. thesis, p. 26. Tampere University Technology, Tampere, Finland (2000)Google Scholar
  17. 17.
    Rundblad, E., Labunets, V., Egiazarian, K., Astola, J.: Fast invariant recognition of color images based on Fourier–Clifford number theoretical transform. In: EUROPORTO, Conference on Image and Signal Processing for Remote Sensing YI, pp. 284–292 (2000)Google Scholar
  18. 18.
    Labunets, V.G., Kohk, E.V., Ostheimer, E.: Algebraic models and methods of computer image processing. Part 1. Multiplet models of multichannel images. Comput. Opt. 42(1), 84–96 (2018)CrossRefGoogle Scholar
  19. 19.
    Brackx, F., De Schepper, N., Sommen, F.: The 2-D Clifford-Fourier transform. J. Math. Imaging Vis. 26(1), 5–18 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Brackx, F., Schepper, N., Sommen, F.: The Fourier transform in Clifford analysis. Adv. Imaging Electron Phys. 156, 55–201 (2009)CrossRefGoogle Scholar
  21. 21.
    De Bie, H., De Schepper, N.: The fractional Clifford-Fourier transform. Complex Anal. Oper. Theory 6(5), 1047–1067 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    De Bie, H., De Schepper, N., Sommen, F.: The class of Clifford-Fourier transforms. J. Fourier Anal. Appl. 17, 1198–1231 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Condon, E.U.: Immersion of the Fourier transform in a continuous group of functional transforms. Proc. Nat. Acad. Sci. 23, 158–164 (1937)CrossRefGoogle Scholar
  24. 24.
    Kober, H.: Wurzeln aus der Hankel- und Fourier und anderen stetigen Transformationen. Quart. J. Math. Oxford Ser. 10, 45–49 (1939)CrossRefGoogle Scholar
  25. 25.
    Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Part 1. Commun. Pure Appl. Math. 14, 187–214 (1961)CrossRefGoogle Scholar
  26. 26.
    Namias, V.: The fractional order Fourier transform and its application to quatum mechanics. J. Inst. Math. Appl. 25, 241–265 (1980)MathSciNetCrossRefGoogle Scholar
  27. 27.
    McBride, A.C., Kerr, F.H.: On Namias’ fractional Fourier transforms. IMA J. Appl. Math. 39, 159–265 (1987)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Ozaktas, H.M., Mendlovic, D.: Fourier transform of fractional order and their optical interpretation. Opt. Commun. 110, 163–169 (1993)CrossRefGoogle Scholar
  29. 29.
    Ozaktas, H.M., Zalevsky, Z., Kutay, M.A.: The Fractional Fourier Transform, p. 532. Wiley, Chichester (2001)Google Scholar
  30. 30.
    Carracedo, C.M., Alix, M.S.: The Theory of Fractional Powers of Operators, p. 366. Elsevier, London - New York (2001)zbMATHGoogle Scholar
  31. 31.
    Kumar, R., Singh, K., Khanna, R.: Satellite image compression using fractional Fourier transform. Int. J. Comput. Appl. 50(3), 20–25 (2012)Google Scholar
  32. 32.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Labs Tech. J. 28(4), 657–671 (1949)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Wyner, A.D.: The wiretap channel. Bell Labs Tech. J. 54(8), 1355–1387 (1975)CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Ural State Forest Engineering UniversityEkaterinburgRussian Federation
  2. 2.Capricat LLCPompano BeachUSA

Personalised recommendations