Advertisement

3-DOF Spherical Parallel Mechanism

  • Gleb S. Filippov
  • Victor A. Glazunov
  • Anna N. TerekhovaEmail author
  • Aleksey B. Lastochkin
  • Robert A. Chernetsov
  • Lyubov V. Gavrilina
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1126)

Abstract

The paper presents a spherical parallel mechanism with three dimensions of freedom, the scope of this robot we see in minimally invasive surgery. The mechanism contains three kinematic chains with three rotational kinematic pairs; all rotational actuators have the same basis vector. The paper contains the positioning problem solution, the kinematic analysis based on the screw theory and Gosselin-Angeles approach, the dynamic analysis based on Euler dynamic equations. Based on this data the control algorithm is proposed and numerical simulation performed.

Keywords

Spherical parallel mechanism Inverse position problem Kinematic analysis Dynamics Control algorithm Matrix Angeles-Gosseline Theory of screws 

Notes

Acknowledgments

The work was supported by the Russian Foundation for basic research (project 16-29-04273).

References

  1. 1.
    Gough, V.E.: Contribution to discussion to papers on research in automobile stability and control and in tyre performance. Autom. Div. Inst. Mech. Eng. 171, 392–396 (1956)Google Scholar
  2. 2.
    Stewart, D.A.: Platform with six degrees of freedom. Proc. Inst. Mech. Eng. 180(15), 371–386 (1965)CrossRefGoogle Scholar
  3. 3.
    Joumah, A.A., Albitar, C.: Design optimization of 6-RUS parallel manipulator using hybrid algorithm. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 10(2), 83–95 (2018)Google Scholar
  4. 4.
    Hunt, K.: Structural kinematics of in-parallel-actuated robot arms. ASME J. Mech. Transm. Autom. Des. 105(4), 705–712 (1983)CrossRefGoogle Scholar
  5. 5.
    Gosselin, C., Angeles, J.: The optimum kinematic design of a spherical three-degree-of-freedom parallel manipulator. Trans. ASME J. Mech. Trans. Autom. Des. 202–207 (1989)CrossRefGoogle Scholar
  6. 6.
    Gosselin, C.M., Angeles, J.: Singularity analysis of closed-loop kinematic chains. IEEE Trans. Robot. Autom. 6(3), 281–290 (1990)CrossRefGoogle Scholar
  7. 7.
    Angeles, J.: The qualitative synthesis of parallel manipulators. J. Mech. Des. 126, 617–624 (2004)CrossRefGoogle Scholar
  8. 8.
    Angeles, J.: Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms. Springer, Dordrecht (2006)zbMATHGoogle Scholar
  9. 9.
    Glazunov, V.A., Kheylo, S.V., Tsarkov, A.V.: The control complex robotic system on parallel mechanism. In: Smart Electromechanical Systems, pp. 137–146. Springer (2018)Google Scholar
  10. 10.
    Laryushkin, P., Glazunov, V., Erastova, K.: On the maximization of joint velocities and generalized reactions in the workspace and singularity analysis of parallel mechanisms. Robotica 37, 675–690 (2019)CrossRefGoogle Scholar
  11. 11.
    Ganiev, R.F., Glazunov, V.A., Filippov, G.S.: Actual machine science problems and their solutions. Wave technologies, additive technologies, machine-tool construction, robotic surgery. J. Mach. Reliab. 5, 16–25 (2018)Google Scholar
  12. 12.
    Huu, K.N., Vo, D.T., Kheylo, S., Glazunov, V.: Oscillations and control of spherical parallel manipulator. Nguyen Int. J. Adv. Robot. Syst. (2019)Google Scholar
  13. 13.
    Sadeqi, S., Bourgeois, S., Park, E., Arzanpour, S.: Design and performance analysis of a 3-RRR spherical parallel manipulator for hip exoskeleton applications. J. Rehabil. Assistive Technol. Eng. 4, 1–11 (2017)CrossRefGoogle Scholar
  14. 14.
    Wu, G.: Multiobjective optimum design of a 3-RRR spherical parallel manipulator with kinematic and dynamic dexterities. Model. Identif. Control. 33(3), 111–122 (2012)CrossRefGoogle Scholar
  15. 15.
    Cammarata, A., Calio, I., Urso, D., Greco, A., Lacagnina, M., Fichera, G.: Dynamic stiffness model of spherical parallel robots. J. Sound Vib. 384, 312–324 (2016)CrossRefGoogle Scholar
  16. 16.
    Xuechao, D., Yongzhi, Y., Bi, C.: Modeling and analysis of a 2-DOF spherical parallel manipulator. Sensors 16, 1485 (2016)CrossRefGoogle Scholar
  17. 17.
    Bai, S., Hansen, M., Angeles, J.: A robust forward-displacement analysis of spherical parallel robots. Mech. Mach. Theory 44(12), 2204–2216 (2009)CrossRefGoogle Scholar
  18. 18.
    Elgolli, H., Houidi, A., Mlika, A., Romdhane, L.: Analytical analysis of the dynamic of a spherical parallel manipulator. Int. J. Adv. Manuf. Technol. 101(1–4), 859–871 (2019)CrossRefGoogle Scholar
  19. 19.
    Kumara, V., Sena, S., Roy, S.S., Dasa, S.K., Shomea, S.N.: Inverse kinematics of redundant manipulator using interval newton method. Int. J. Eng. Manuf. (IJEM) 2, 19–29 (2015)Google Scholar
  20. 20.
    Mohammed, R.H., Elnaghi, B.E., Bendary, F.A., Elserfi, K.: Trajectory tracking control and robustness analysis of a robotic manipulator using advanced control techniques. Int. J. Eng. Manuf. (IJEM) 6, 42–54 (2018)Google Scholar
  21. 21.
    Krishan, G., Singh, V.R.: Motion control of five bar linkage manipulator using conventional controllers under uncertain conditions. Int. J. Intell. Syst. Appl. (IJISA) 5, 34–40 (2016)Google Scholar
  22. 22.
    Piltan, F., TayebiHaghighi, S., Sahamijoo, A., Bod, H.R., Jowkar, S., Kim, J.: Adaptive finite-time convergence fuzzy ARX-laguerre system estimation. Int. J. Intell. Syst. Appl. (IJISA) 5, 27–35 (2019)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Gleb S. Filippov
    • 1
  • Victor A. Glazunov
    • 1
  • Anna N. Terekhova
    • 1
    Email author
  • Aleksey B. Lastochkin
    • 1
  • Robert A. Chernetsov
    • 1
  • Lyubov V. Gavrilina
    • 1
  1. 1.Mechanical Engineering Research Institute of the Russian Academy of SciencesMoscowRussian Federation

Personalised recommendations