Semi-phenomenological Approach to Surface-Bonded Chiral Nanostructures Creation Based on DNA-origami

  • Veronika S. Beliaeva
  • Olga A. Chichigina
  • Dmitriy S. Klyuev
  • Anatoly M. Neshcheret
  • Oleg V. Osipov
  • Alexander A. PotapovEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1126)


In this work the statistical properties of quasi-periodic structures disturbed by thermal fluctuations are investigated. A chain of DNA as an example of such structure is under consideration. This chain interacts with some chemical elements and creates great variety of stable nanostructures. The process is called DNA-origami. The problem of interaction of DNA-molecule with periodic flat surface is solved by using a semi-phenomenological model. The places of DNA attachments to the surface correspond to a quasi-periodic sequence of random points. The model allows determinate the optimal frequency of chemical periodical patterning on a substrate.


DNA-origami Statistical distribution Chirality Nanomaterial Renewal process 


  1. 1.
    Liu, L., Li, Y., Wang, Y., et al.: Regulating DNA self-assembly by dna-surface interactions. ChemBioChem 18(24), 2404–2407 (2017). Scholar
  2. 2.
    Aithala S.P., Aithalb, S.: Nanotechnology innovations and commercialization-opportunities, challenges & reasons for delay. Int. J. Eng. Manufact. (IJEM), 6, 15–25 (2016). Published Online November 2016 in MECS. ( Scholar
  3. 3.
    Khalil, M.I.: A new heuristic approach for DNA sequences alignment. Int. J. Image, Graph. Signal Process. (IJIGSP) 12, 18–23 (2015). Published Online November 2015 in MECS. ( Scholar
  4. 4.
    Woo, S., Rothemund, P.W.K.: Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion. Nature Commun. 5(1), 1–10 (2014).
  5. 5.
    Tverdislov, V.A., Malyshko, E.V., et al.: Periodic system of chiral structures in molecular biology. Biophysics 63(3), 421–434 (2017). Scholar
  6. 6.
    Schreiber, R., Luong, N., Fan, Z., et al.: Chiral plasmonic DNA nanostructures with switchable circular dichroism. Nature Commun. 4(1), 1–6 (2013). Scholar
  7. 7.
    Kaur P., Aggarwal S.K., De A.: Design and investigation of circularly polarized RMPA with chiral metamaterial cover. Int. J. Wirel. Microwave Technol. (IJWMT) 3, 61–70 (2016). Published Online May 2016 in MECS. ( Scholar
  8. 8.
    Lund, K., Manzo, A.J., Dabby, N., et al.: Molecular robots guided by prescriptive landscapes. Nature 465(7295), 206–210 (2010). Scholar
  9. 9.
    Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Volume I: Elementary Theory and Methods. 471 p. Springer, New York (2003).
  10. 10.
    Akhmanov, S.A., Diakov Y.Y., Chirkin A.S.: Vvedenie v statisticheskuyu radiofiziku i optiku [Introduction to statistical radiophysics and optics]. 640 p. Nauka, Moscow (1981). (In Russian)Google Scholar
  11. 11.
    Haight F.A.: Handbook of the Poisson Distribution. 168 p. Wiley, New York (1967)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Veronika S. Beliaeva
    • 1
  • Olga A. Chichigina
    • 1
  • Dmitriy S. Klyuev
    • 2
  • Anatoly M. Neshcheret
    • 2
  • Oleg V. Osipov
    • 2
  • Alexander A. Potapov
    • 3
    • 4
    Email author
  1. 1.Lomonosov Moscow State UniversityMoscowRussian Federation
  2. 2.Povolzhskiy State University of Telecommunications and InformaticsSamaraRussian Federation
  3. 3.V.A. Kotelnikov Institute of Radio Engineering and ElectronicsMoscowRussian Federation
  4. 4.Joint-Lab of JNU-IREE RAS, JiNan UniversityGuangzhouChina

Personalised recommendations