Advertisement

Synchronization of Neural Ensembles in the Formation of Attention in the Brain

  • M. MazurovEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1126)

Abstract

The method of studying the synchronization of relaxation self-oscillations, based on a modified axiomatic method and using the properties of uniform almost-periodic functions is used. A computational algorithm is used to study the synchronization of relaxation self-oscillations, using axiomatic algebraic models and properties of the theory of uniform almost periodic functions. It is shown that synchronization is a flexible and efficient process for shaping the attention of other cognitive processes to certain external informational influences. The five synchronization modes of neural ensembles of 100 peripheral neurons were investigated: asynchronous mode, full synchronization, partial synchronization, “incorrect” synchronization mode, transient phase-dynamic process. The complex synchronization regimes of relaxation self-oscillations are considered: “incorrect” synchronization, the presence of specific and “phase-dynamic” transient processes caused by the properties of uniform almost-periodic functions. Discussed the adequacy of the used mathematical computer model for the formation of attention.

Keywords

Synchronization Relaxation self-oscillations Axiomatic theory Uniform almost periodic functions Kronecker inequalities Computer algorithms 

References

  1. 1.
    Abarbanel, G.D.I., Rabinovich, M.I., Selverston, A.: Synchronization in neural ensembles. Successes phys. sci. 166(4), 363–390 (1996)Google Scholar
  2. 2.
    Borisyuk, G.N., Borisyuk, R.M., Kazanovich, Ya.B., Luzyanina, T.B., Turova, T.S., Tsymbalyuk, G.S.: Oscillatory neural networks. Math. Results Appl. Mat. Simul. 4(1), 3–43 (1992)zbMATHGoogle Scholar
  3. 3.
    Borisyuk, G.N., Borisyuk, R.M., Kazanovich, Ya.B., Ivanitsky, G.R.: Modeling the dynamics of neural activity and information processing in the brain - the results of the “decade”. Successes Phys. Sci. 172(10), 1189–1214 (2002)Google Scholar
  4. 4.
    Borisyuk, G.N., Borisyuk, R.M., Kazanovich, Ya.B., Ivanitsky, G.R.: UFN, 172: 10 (2002), 1189–11214; Phys. Usp., 45:10, 1073-1095 (2002)CrossRefGoogle Scholar
  5. 5.
    Vinogradova, O.S.: Hippocampus and memory. M: Science (1975)Google Scholar
  6. 6.
    Ivanitsky, G.R., Medvinsky, A.B., Tsyganov, M.A.: From the dynamics of population autowaves formed by living cells to neuroinformatics. Adv. Phys. Sci. 164(10), 1041–1072 (1994)Google Scholar
  7. 7.
    Kazanovich, Ya.B., Borisyuk, R.M.: Synchronization in the neural network of phase oscillators with the central element. Math. Model. 6(8), 45–60 (1994)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Kazanovich, Ya.B.: The theory of temporal correlation and segmentation models of visual information in the brain. Math. Biol. Bioinform. 5(1), 43–97 (2010)CrossRefGoogle Scholar
  9. 9.
    Kazanovich, Ya.B.: Oscillatory neural network models of cognitive functions of the brain. Thesis for the degree of Dr.Sc. Pushchino, p. 463 (2018)Google Scholar
  10. 10.
    Saleh, B.J., Qasim al-Aqbi, A.T., Falih Saedi, A.Y., Salman, L.: Comparative study of inspired algorithms for trajectory-following control in mobile robot. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 10(9), 1–10 (2018)CrossRefGoogle Scholar
  11. 11.
    Moshref, M., Al-Sayyad, R.: Developing ontology approach using software tool to improve data visualization (case study: computer network). Int. J. Mod. Educ. Comput. Sci. (IJMECS) 11(4), 32–39 (2019).  https://doi.org/10.5815/ijmecs.2019.04.04CrossRefGoogle Scholar
  12. 12.
    Cheah, C.S., Leong, L.: Investigating the redundancy effect in the learning of C++ computer programming using screencasting. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 11(6), 19–25 (2019).  https://doi.org/10.5815/ijmecs.2019.06.03CrossRefGoogle Scholar
  13. 13.
    Alvarez-Dionisi, L.E., Balza, M.M.R.: Teaching artificial intelligence and robotics to undergraduate systems engineering students. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 11(7), 54–63 (2019).  https://doi.org/10.5815/ijmecs.2019.07.06CrossRefGoogle Scholar
  14. 14.
    Kuznetsov, A.P., Roman, Yu.P., Stankevich, N.V., Tyuryukina, L.V.: Pulse synchronization and synchronization in coupled systems: new aspects of the classical problem. Izv. Universities “PND”, vol. 16, № 3, pp. 88–111 (2008)Google Scholar
  15. 15.
    Kuznetsov, A.P., Seliverstova, E.S., Trubetskov, D.I., Tyuryukin, L.V.: The phenomenon of the van der Pol equation Izv. universities. “PND”, vol. 22, no. 4 (2014)Google Scholar
  16. 16.
    Kryukov, V.I.: The role of the hippocampus in long-term memory: a system-dynamic approach. J. High. Nerv. Act. 57(3), 261–278 (2007)Google Scholar
  17. 17.
    Nekorkin, V.I.: Nonlinear oscillations and waves in neurodynamics. Phys.-Uspekhi 178(3), 313–323 (2008). UFNGoogle Scholar
  18. 18.
    Mazurov, M.E.: Nonlinear synchronization and rhythmogenesis in electrically excitable heart systems. Thesis for the degree of Dr.Sc. Pushchino, p. 273 (2007)Google Scholar
  19. 19.
    Mazurov, M.E.: A geometric method for studying the solution of diophantine inequalities in problems of synchronizing relaxation oscillations. IVUZ. sir Maths. №7. C.13–20 (1989)Google Scholar
  20. 20.
    Mazurov, M.E.: Solution of diophantine inequalities in problems of the synchronization of relaxation oscillations. ZhVM MF AS USSR 31(11), 1619–1636 (1991)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Mazurov, M.E.: New periodic solutions of non-autonomous systems of nonlinear differential equations with a small parameter to derivatives and their stability. Dokl. Akad. Nauk SSSR 442(1), 33 (2012)Google Scholar
  22. 22.
    Mazurov, M.E.: Synchronization of relaxation self-oscillatory systems, synchronization in neural networks. Izv. RAN Phys. Ser. 82(1), 83–87 (2018)Google Scholar
  23. 23.
    Mishchenko, U.F., Rozov, N.Kh.: Differential equations with a small parameter and relaxation oscillations, p. 247 (1975). M.: NaukaGoogle Scholar
  24. 24.
    Pikovsky, A., Rosenblyum, M., Kurts, U.: Synchronization, a fundamental non-linear phenomenon, p. 508 (2003). M.: TechnosphereGoogle Scholar
  25. 25.
    Khinchin, A.Ya.: Continued fractions, GIFML (1978). M.: “Science”Google Scholar
  26. 26.
    Chik, D., Borisyuk, R.M., Kazanovich, Ya.B.: Synchronization modes in the Hodgkin - Huxley neuron network with a central element. Math. Biol. Bioinform. 3(1), 16–35 (2008)CrossRefGoogle Scholar
  27. 27.
    Fitzpatrick, J.S., Akopian, G., Walsh, J.P.: Short-term plasticity at inhibitory synapses in rat striatum output. J. Neurophysiol. 85, 2088–2099 (2001)CrossRefGoogle Scholar
  28. 28.
    Fries, P., Schroeder, J.-H., Roelfsema, P.R., Singer, W., Engel, A.K.: Correlation of stimulus selection. J. Neurosci. 22, 3739–3754 (2002)CrossRefGoogle Scholar
  29. 29.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)CrossRefGoogle Scholar
  30. 30.
    Fries, P., Schroeder, J.-H., Roelfsema, P.R., Singer, W., Engel, A.K.: Correlation of stimulus selection. J. Neurosci. 22, 3739–3754 (2002)CrossRefGoogle Scholar
  31. 31.
    Gray, C.M., Konig, P., Engel, A.K., Singer, W.: Oscillatory responses in cat visual cortex exhibit intercolumnar synchronization. Nature 388, 334–337 (1989)CrossRefGoogle Scholar
  32. 32.
    Klein, R.: Inhibitory tagging system facilitates visual search. Nature 334, 430–431 (1988)CrossRefGoogle Scholar
  33. 33.
    Takeda, Y., Yagi, A.: Inhibitory tagging stimuli remain visible. Percept. Psychophys. 62, 927–934 (2000)CrossRefGoogle Scholar
  34. 34.
    Zucker, R.S., Regehr, W.G.: Short-term synaptic plasticity. Ann. Rev. Physiol. 64, 355–405 (2002)Google Scholar
  35. 35.
    Wiener, N., Rosenblueth, A.: The Arch. Inst. Cardiologia de Mexico. 205(16), 3–4 (1946)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Russian Economic University G.V. PlekhanovaMoscowRussia

Personalised recommendations