Synchronization of Neural Ensembles in the Formation of Attention in the Brain

  • M. MazurovEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1126)


The method of studying the synchronization of relaxation self-oscillations, based on a modified axiomatic method and using the properties of uniform almost-periodic functions is used. A computational algorithm is used to study the synchronization of relaxation self-oscillations, using axiomatic algebraic models and properties of the theory of uniform almost periodic functions. It is shown that synchronization is a flexible and efficient process for shaping the attention of other cognitive processes to certain external informational influences. The five synchronization modes of neural ensembles of 100 peripheral neurons were investigated: asynchronous mode, full synchronization, partial synchronization, “incorrect” synchronization mode, transient phase-dynamic process. The complex synchronization regimes of relaxation self-oscillations are considered: “incorrect” synchronization, the presence of specific and “phase-dynamic” transient processes caused by the properties of uniform almost-periodic functions. Discussed the adequacy of the used mathematical computer model for the formation of attention.


Synchronization Relaxation self-oscillations Axiomatic theory Uniform almost periodic functions Kronecker inequalities Computer algorithms 


  1. 1.
    Abarbanel, G.D.I., Rabinovich, M.I., Selverston, A.: Synchronization in neural ensembles. Successes phys. sci. 166(4), 363–390 (1996)Google Scholar
  2. 2.
    Borisyuk, G.N., Borisyuk, R.M., Kazanovich, Ya.B., Luzyanina, T.B., Turova, T.S., Tsymbalyuk, G.S.: Oscillatory neural networks. Math. Results Appl. Mat. Simul. 4(1), 3–43 (1992)zbMATHGoogle Scholar
  3. 3.
    Borisyuk, G.N., Borisyuk, R.M., Kazanovich, Ya.B., Ivanitsky, G.R.: Modeling the dynamics of neural activity and information processing in the brain - the results of the “decade”. Successes Phys. Sci. 172(10), 1189–1214 (2002)Google Scholar
  4. 4.
    Borisyuk, G.N., Borisyuk, R.M., Kazanovich, Ya.B., Ivanitsky, G.R.: UFN, 172: 10 (2002), 1189–11214; Phys. Usp., 45:10, 1073-1095 (2002)CrossRefGoogle Scholar
  5. 5.
    Vinogradova, O.S.: Hippocampus and memory. M: Science (1975)Google Scholar
  6. 6.
    Ivanitsky, G.R., Medvinsky, A.B., Tsyganov, M.A.: From the dynamics of population autowaves formed by living cells to neuroinformatics. Adv. Phys. Sci. 164(10), 1041–1072 (1994)Google Scholar
  7. 7.
    Kazanovich, Ya.B., Borisyuk, R.M.: Synchronization in the neural network of phase oscillators with the central element. Math. Model. 6(8), 45–60 (1994)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Kazanovich, Ya.B.: The theory of temporal correlation and segmentation models of visual information in the brain. Math. Biol. Bioinform. 5(1), 43–97 (2010)CrossRefGoogle Scholar
  9. 9.
    Kazanovich, Ya.B.: Oscillatory neural network models of cognitive functions of the brain. Thesis for the degree of Dr.Sc. Pushchino, p. 463 (2018)Google Scholar
  10. 10.
    Saleh, B.J., Qasim al-Aqbi, A.T., Falih Saedi, A.Y., Salman, L.: Comparative study of inspired algorithms for trajectory-following control in mobile robot. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 10(9), 1–10 (2018)CrossRefGoogle Scholar
  11. 11.
    Moshref, M., Al-Sayyad, R.: Developing ontology approach using software tool to improve data visualization (case study: computer network). Int. J. Mod. Educ. Comput. Sci. (IJMECS) 11(4), 32–39 (2019). Scholar
  12. 12.
    Cheah, C.S., Leong, L.: Investigating the redundancy effect in the learning of C++ computer programming using screencasting. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 11(6), 19–25 (2019). Scholar
  13. 13.
    Alvarez-Dionisi, L.E., Balza, M.M.R.: Teaching artificial intelligence and robotics to undergraduate systems engineering students. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 11(7), 54–63 (2019). Scholar
  14. 14.
    Kuznetsov, A.P., Roman, Yu.P., Stankevich, N.V., Tyuryukina, L.V.: Pulse synchronization and synchronization in coupled systems: new aspects of the classical problem. Izv. Universities “PND”, vol. 16, № 3, pp. 88–111 (2008)Google Scholar
  15. 15.
    Kuznetsov, A.P., Seliverstova, E.S., Trubetskov, D.I., Tyuryukin, L.V.: The phenomenon of the van der Pol equation Izv. universities. “PND”, vol. 22, no. 4 (2014)Google Scholar
  16. 16.
    Kryukov, V.I.: The role of the hippocampus in long-term memory: a system-dynamic approach. J. High. Nerv. Act. 57(3), 261–278 (2007)Google Scholar
  17. 17.
    Nekorkin, V.I.: Nonlinear oscillations and waves in neurodynamics. Phys.-Uspekhi 178(3), 313–323 (2008). UFNGoogle Scholar
  18. 18.
    Mazurov, M.E.: Nonlinear synchronization and rhythmogenesis in electrically excitable heart systems. Thesis for the degree of Dr.Sc. Pushchino, p. 273 (2007)Google Scholar
  19. 19.
    Mazurov, M.E.: A geometric method for studying the solution of diophantine inequalities in problems of synchronizing relaxation oscillations. IVUZ. sir Maths. №7. C.13–20 (1989)Google Scholar
  20. 20.
    Mazurov, M.E.: Solution of diophantine inequalities in problems of the synchronization of relaxation oscillations. ZhVM MF AS USSR 31(11), 1619–1636 (1991)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Mazurov, M.E.: New periodic solutions of non-autonomous systems of nonlinear differential equations with a small parameter to derivatives and their stability. Dokl. Akad. Nauk SSSR 442(1), 33 (2012)Google Scholar
  22. 22.
    Mazurov, M.E.: Synchronization of relaxation self-oscillatory systems, synchronization in neural networks. Izv. RAN Phys. Ser. 82(1), 83–87 (2018)Google Scholar
  23. 23.
    Mishchenko, U.F., Rozov, N.Kh.: Differential equations with a small parameter and relaxation oscillations, p. 247 (1975). M.: NaukaGoogle Scholar
  24. 24.
    Pikovsky, A., Rosenblyum, M., Kurts, U.: Synchronization, a fundamental non-linear phenomenon, p. 508 (2003). M.: TechnosphereGoogle Scholar
  25. 25.
    Khinchin, A.Ya.: Continued fractions, GIFML (1978). M.: “Science”Google Scholar
  26. 26.
    Chik, D., Borisyuk, R.M., Kazanovich, Ya.B.: Synchronization modes in the Hodgkin - Huxley neuron network with a central element. Math. Biol. Bioinform. 3(1), 16–35 (2008)CrossRefGoogle Scholar
  27. 27.
    Fitzpatrick, J.S., Akopian, G., Walsh, J.P.: Short-term plasticity at inhibitory synapses in rat striatum output. J. Neurophysiol. 85, 2088–2099 (2001)CrossRefGoogle Scholar
  28. 28.
    Fries, P., Schroeder, J.-H., Roelfsema, P.R., Singer, W., Engel, A.K.: Correlation of stimulus selection. J. Neurosci. 22, 3739–3754 (2002)CrossRefGoogle Scholar
  29. 29.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)CrossRefGoogle Scholar
  30. 30.
    Fries, P., Schroeder, J.-H., Roelfsema, P.R., Singer, W., Engel, A.K.: Correlation of stimulus selection. J. Neurosci. 22, 3739–3754 (2002)CrossRefGoogle Scholar
  31. 31.
    Gray, C.M., Konig, P., Engel, A.K., Singer, W.: Oscillatory responses in cat visual cortex exhibit intercolumnar synchronization. Nature 388, 334–337 (1989)CrossRefGoogle Scholar
  32. 32.
    Klein, R.: Inhibitory tagging system facilitates visual search. Nature 334, 430–431 (1988)CrossRefGoogle Scholar
  33. 33.
    Takeda, Y., Yagi, A.: Inhibitory tagging stimuli remain visible. Percept. Psychophys. 62, 927–934 (2000)CrossRefGoogle Scholar
  34. 34.
    Zucker, R.S., Regehr, W.G.: Short-term synaptic plasticity. Ann. Rev. Physiol. 64, 355–405 (2002)Google Scholar
  35. 35.
    Wiener, N., Rosenblueth, A.: The Arch. Inst. Cardiologia de Mexico. 205(16), 3–4 (1946)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Russian Economic University G.V. PlekhanovaMoscowRussia

Personalised recommendations