Agro-Industrial Waste as Substrates for the Production of Bacterial Pigment

  • Chidambaram Kulandaisamy Venil
  • Ponnuswamy Renuka Devi
  • Wan Azlina Ahmad
Part of the Applied Environmental Science and Engineering for a Sustainable Future book series (AESE)


There is worldwide interest in process development for the production of pigments from natural sources due to a serious safety problem with many artificial synthetic colorants, which have widely been used in foodstuff, cosmetic, and pharmaceutical manufacturing processes. Low-cost by-products and residues of agro-industrial origin have shown their potential in production of different pigments by diverse group microorganisms and to explore the possibility of pigment production by different microbial isolates from numerous sources on various substrates. The main applications of recycled wastes are enzyme production, organic acid isolation, pigment extraction, bioactive compound production, etc. Therefore, more regulatory approval and capital investments are required to bring these value-added products in the commercial market. The conversion of agro-industrial residues to important substances may not only provide future dimension to researchers but also reduce the current environmental hazards.


Agro-industrial waste Microbes Fermentation Pigments Low-cost substrate 



The financial support to Dr. C.K. VENIL from the Dr. D.S. Kothari Postdoctoral Fellowship, UGC is gratefully acknowledged.


  1. Ahmad WA, Ahmad WYW, Zakaria ZA (2012) Applications of bacterial pigments as colorant. The Malaysian perspective. Springer Briefs in Molecular Science. Springer, New York, p 77CrossRefGoogle Scholar
  2. Andrighetti-Frohner CR, Antonio RV, Creczynski-Pasa TB, Barardi CRM, Simoes CMO (2003) Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum. Mem Inst Oswaldo Cruz 98(6):843–848PubMedCrossRefPubMedCentralGoogle Scholar
  3. Babitha S (2009) Microbial pigments. In: Nigam PS, Pandey A (eds) Biotechnology for agro-industrial residues. Springer, Dordrecht, pp 147–162CrossRefGoogle Scholar
  4. Bhatia L, Johri S, Ahmad R (2012) An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express 2(1):65PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bos A, Hamelinck C (2014) Greenhouse gas impact of marginal fossil fuel use. Project number: BIENL14773Google Scholar
  6. Cazetta ML, Celligoi MA, Buzato JB, Scarmino IS (2007) Fermentation of molasses by Zymomonas mobilis: effects of temperature and sugar concentration on ethanol production. Bioresour Technol 98(15):2824–2828PubMedCrossRefPubMedCentralGoogle Scholar
  7. Chadni Z, Rahaman MH, Jerin I, Hoque KMF, Reza MA (2017) Extraction and optimisation of red pigment production as secondary metabolites from Talaromyces verruculosus and its potential use in textile industries. Mycol 8:48–57CrossRefGoogle Scholar
  8. Chattopadhyay MK, Jagannadham MV, Vairamani M, Shivaji S (1997) Carotenoid pigments of an Antarctic psychrotrophic bacterium Micrococcus roseus: temperature dependent biosynthesis, structure and interaction with synthetic membranes. Biochem Biophys Res Commun 239:85–90PubMedCrossRefPubMedCentralGoogle Scholar
  9. Dai YJ, Sun QY, Wang WS, Lu L, Liu M, Li JJ, Yang SS, Sun Y, Zhang KX, Xu JY, Zheng WL, Hu ZY, Yang YH, Gao YW, Chen YJ, Zhang X, Gao F, Zhang Y (2018) Utilizations of agricultural waste as adsorbent for the removal of contaminants: a review. Chemosphere 211:235–253PubMedCrossRefPubMedCentralGoogle Scholar
  10. de Carvalho DD, Costa FTM, Duran N, Haun M (2006) Cytotoxic activity of violacein in human colon cancer cells. Toxicol In Vitro 20:1514–1521PubMedCrossRefPubMedCentralGoogle Scholar
  11. Deng GF, Shen C, Xu XR (2012) Potential of fruit wastes as natural resources of bioactive compounds. Int J Mol Sci 13(7):8308–8323PubMedPubMedCentralCrossRefGoogle Scholar
  12. Dhillon GS, Kaur S (2016) Agro-industrial wastes as feedstock for enzyme production: apply and exploit the emerging and valuable use options of waste biomass. Academic, LondonGoogle Scholar
  13. Domínguez-Bocanegra AR, Torres-Muñoz JA, López RA (2015) Production of bioethanol from agro-industrial wastes. Fuel 149:85–89CrossRefGoogle Scholar
  14. Dufossé L (2006) Microbial production of food grade pigments. Food Technol Biotechnol 44(3):313–323Google Scholar
  15. Duhan JS, Kumar A, Tanwar SK (2013) Bioethanol production from starchy part of tuberous plant (potato) using Saccharomyces cerevisiae MTCC-170. Afr J Microbiol Res 7:5253–5260CrossRefGoogle Scholar
  16. Duran N, Justo GZ, Melo PS, DeAzevedo MBM, Brito ARMS, Almeida ABA (2003) Evaluation of the antiulcerogenic activity of violacein and its modulation by the inclusion complexation with beta-cyclodextrin. Can J Physiol Pharmcol 81(4):387–396CrossRefGoogle Scholar
  17. El-Tayeb TS, Abdelhafez AA, Ali SH, Ramadan EM (2012) Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production. Braz J Microbiol 43(4):1523–1535PubMedPubMedCentralCrossRefGoogle Scholar
  18. Faisal PA, Hareesh ES, Priji P, Unni KN, Sajith S, Sreedevi S, Josh MS, Benjamin S (2014) Optimization of parameters for the production of lipase from Pseudomonas sp. BUP6 by solid state fermentation. Adv Enzyme Res 2:125–133CrossRefGoogle Scholar
  19. Gurav A, Ghosh J, Girish K (2011) Decolourization of anthroquinone based dye Vat Red 10 by Pseudomonas desmolyticum NCIM 2112 and Galactomyces geotrichum MTCC 1360. Int J Biotechnol Mol Biol Res 2(6):93–97Google Scholar
  20. Guyomarc’h F, Binet A, Dufossé L (2000) Production of carotenoids by Brevibacterium linens: variation among strains, kinetic aspects and HPLC profiles. J Ind Microbiol Biotechnol 24:64–70CrossRefGoogle Scholar
  21. Hamelinck CN, Hooijdonk GV, Faaij APC (2005) Ethanol from lignocellulosic biomass: technoeconomic performance in short-, middle-and long-term. Biomass Bioenergy 28:384–410CrossRefGoogle Scholar
  22. Han D, Kim SJ, Kim DM (1998) Repeated regeneration of degraded red beet juice pigments in the presence of antioxidants. J Food Sci 63(1):69–72CrossRefGoogle Scholar
  23. Hendry GAF, Houghton JD (1997) Natural food colorants. Blackie & Son, GlasgowGoogle Scholar
  24. Kaur B, Chakraborty D, Kaur H (2008) Production and stability analysis of yellowish pink pigments from Rhodotorula rubra MTCC 1446. Int J Microbiol 7:1Google Scholar
  25. Kaur PS, Kaur S, Kaur H, Sharma A, Raj P, Panwar S (2015) Solid substrate fermentation using agro industrial waste: new approach for amylase production by Bacillus licheniformis. Intern J Curr Microbiol Appl Sci 4:712–717Google Scholar
  26. Kim D, Kim JF, Yim JH, Kwon SK, Lee CH (2008) Red to red - the marine bacterium Hahella chejuensis and its product prodigiosin for mitigation of harmful algal blooms. J Microbiol Biotechnol 18:1621–1629PubMedPubMedCentralGoogle Scholar
  27. Kim HW, Kim JB, Cho SM, Chung MN, Lee YM, Chu SM (2012) Anthocyanin changes in the Korean purple-fleshed sweet potato, Shinzami, as affected by steaming and baking. Food Chem 130:966–972CrossRefGoogle Scholar
  28. Korumilli T (2014) Studies on pigment production by microorganisms using raw materials of agro-industrial origin. Ph.D thesis, National Institute of Technology, OrissaGoogle Scholar
  29. Krishna JG (2008) Pigment production by marine Serratia sp. BTWJ8. Ph.D thesis, Cochin University of Science and Technology, KeralaGoogle Scholar
  30. Kumar A, Duhan JS, Gahlawat SK, Surekha (2014) Production of ethanol from tuberous plant (sweet potato) using Saccharomyces cerevisiae MTCC-170. Afr J Biotechnol 13(28):2874–2883CrossRefGoogle Scholar
  31. Kumar A, Vishwakarma HS, Singh J (2015) Microbial pigments: production and their applications in various industries. IJPCBS 1:203–212Google Scholar
  32. Kumar A, Sadh PK, Surekha DJS (2016) Bio-ethanol production from sweet potato using co-culture of saccharolytic molds (Aspergillus spp.) and Saccharomyces cerevisiae MTCC170. J Adv Biotechnol 6(1):822–827CrossRefGoogle Scholar
  33. Leon LL, Miranda CC, De Souza AO, Duran N (2001) Antileishmanial activity of the violacein extracted from Chromobacterium violaceum. J Antimicrob Chemother 3:449–450CrossRefGoogle Scholar
  34. Long TV (2004) Process for production of carotenoids, xanthophylls and apo carotenoids utilizing eukaryotic microorganisms. US Patent 6783951Google Scholar
  35. Lorquin J, Molouba F, Dreyfus BL (1997) Identification of the carotenoid pigment canthaxanthin from photosynthetic Bradyrhizobium strains. Appl Environ Microbiol 3:1151–1154CrossRefGoogle Scholar
  36. Malik K, Tokkas J, Goyal S (2012) Microbial pigments: a review. Int J Microb Res Technol 1(4):361–365Google Scholar
  37. Marova I, Carnecka M, Halienova A, Certik M, Dvorakova T, Haronikova A (2012) Use of several waste substrates for carotenoid-rich yeast biomass production. J Environ Manag 95:338–342CrossRefGoogle Scholar
  38. Martins DAB, Prado HFA, Leite RSR, Ferreira H, Moretti MMS, Silva R, Gomes E (2011) Agroindustrial wastes as substrates for microbial enzymes production and source of sugar for bioethanol production. In: Kumar S (ed) Integrated waste management, vol II. InTech, Rijeka, CroatiaGoogle Scholar
  39. Mehta K, Duhan JS (2014) Production of invertase from Aspergillus nigerusing fruit peel waste as a substrate. Intern J Pharm Biol Sci 5(2):B353–B360Google Scholar
  40. Méndez A, Pérez C, Montañéz JC, Martínez G, Aguilar CN (2011) Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J Jhejiang Univ-Sci B 12(12):961–968CrossRefGoogle Scholar
  41. Mushimiyimana I, Tallapragada P (2016) Bioethanol production from agro wastes by acid hydrolysis and fermentation process. J Sci Ind Res 75:383–388Google Scholar
  42. Mussatto SI, Ballesteros LF, Martins S, Teixeira JA (2012) Use of agro-industrial wastes in solid state fermentation process. In: Industrial waste. InTech, Rijeka, CroatiaGoogle Scholar
  43. Nagpal N, Munjal N, Chatterjee S (2011) Microbial pigments with health benefits - a mini review. Trend Biosci 4:157–160Google Scholar
  44. Nimnoi P, Lumyong S (2011) Improving solid state fermentation of Monascus purpureus on agricultural products for pigment production. Food Bioprocess Technol 4:1384–1390CrossRefGoogle Scholar
  45. Okonko IO, Adeola OT, Aloysius FE, Damilola AO, Adewale OA (2009) Utilization of food wastes for sustainable development. Electr J Environ Agric Food Chem 8(4):263–286Google Scholar
  46. Pandey A, Soccol CR (2000) Economic utilization of crop residues for value addition: a futuristic approach. J Sci Ind Res 59(1):12–22Google Scholar
  47. Pandey A, Soccol CR, Nigam P, Soccol VT (2000a) Biotechnological potential of agro-industrial residues. I. Sugarcane bagasse. Bioresour Technol 74:69–80CrossRefGoogle Scholar
  48. Pandey A, Soccol CR, Nigam P, Soccol VT, Vandenberghe LPS, Mohan R (2000b) Biotechnological potential of agroindustrial residues. II: Cassava bagasse. Bioresour Technol 74:81–87CrossRefGoogle Scholar
  49. Pandey A, Soccol CR, Nigam P, Brand D, Mohan R, Roussos S (2000c) Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem Eng J 6:153–162PubMedCrossRefPubMedCentralGoogle Scholar
  50. Panesar PS, Kennedy JF (2012) Biotechnological approaches for the value addition of whey. Crit Rev Biotechnol 32(4):327–348PubMedCrossRefPubMedCentralGoogle Scholar
  51. Panesar R, Kaur S, Panesar PS (2015) Production of microbial pigments utilizing agro-industrial waste: a review. Curr Opin Food Sci 1:70–76CrossRefGoogle Scholar
  52. Parashar S, Sharma H, Garg M (2014) Antimicrobial and antioxidant activities of fruits and vegetable peels: a review. J Pharmcogn Phytochemistry 3:160–164Google Scholar
  53. Poplawsky AR, Urban SC, Chun W (2000) Biological role of xanthomonadin pigments in Xanthomonas campestris pv. Campestris. Appl Environ Microbiol 9:5123–5127CrossRefGoogle Scholar
  54. Rao MPN, Xiao M, Li WJ (2017) Fungal and bacterial pigments: secondary metabolites with wide applications. Front Microbiol 8:1113CrossRefGoogle Scholar
  55. Ravindran R, Hassan SS, Williams GA, Jaiswal AK (2018) A review on bioconversion of agro-industrial wastes to industrially important enzymes. Bioengineering 5(4):93PubMedPubMedCentralCrossRefGoogle Scholar
  56. Rodríguez-Couto S (2008) Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions. Biotechnol J 3:859–870PubMedCrossRefPubMedCentralGoogle Scholar
  57. Sadh PK, Duhan S, Duhan JS (2018) Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour Bioprocess 5:1–15CrossRefGoogle Scholar
  58. Salihu A, Md A, Abdulkarim M, Salleh H (2012) Lipase production: an insight in the utilization of renewable agricultural residues. Resour Conserv Recycl 58:36–44CrossRefGoogle Scholar
  59. Sanchéz C (2009) Lignocellulosic residues: biodegradation and Bioconversion by fungi. Biotechnol Adv 27(2):185–194PubMedCrossRefGoogle Scholar
  60. Sarvamangala D, Aparna SSV (2016) Microbial pigments – a short review. J Env Sci Toxicol Food Technol 10(8):01–07Google Scholar
  61. Shirata A, Tsukamoto T, Yasui H, Hata T, Hayasaka S, Kojima A (2000) Isolation of bacteria producing bluish-purple pigment and use for dyeing. Jpn Agric Res Q 34:131–140Google Scholar
  62. Silveira ST, Daroit DJ, Brandelli A (2008) Pigment production by Monascus purpureus in grape waste using factorial design. Food Sci Technol 41:170–174Google Scholar
  63. Singh S, Immanuel G (2014) Extraction of antioxidants from fruit peels and its utilization in paneer. J Food Process Technol 5:349CrossRefGoogle Scholar
  64. Soccol CR, Vandenberghe LPS (2003) Overview of applied solid-state fermentation in Brazil. Biochem Eng J 13:205–218CrossRefGoogle Scholar
  65. Srikanlayanukul M, Chartchai K, Saisamorn L (2006) Decolourization of textile wastewater by immobilized coriolus versicolour RC3 in repeated-batch system with the effect of sugar addition. CMU J 5(3):301–306Google Scholar
  66. Tuli HS, Chaudhary P, Beniwal V, Sharma AK (2015) Microbial pigments as natural color sources: current trends and future perspectives. J Food Sci Technol 52(8):4669–4678PubMedPubMedCentralCrossRefGoogle Scholar
  67. Valduga E, Valerio A, Tatsch PO, TreichelFurigo HA, Luccio MD (2009) Assessment of cell disruption and carotenoids extraction from Sporidiobolus salmonicolor. Food Bioproc Technol 2:234–238CrossRefGoogle Scholar
  68. Vazquez M, Santos V, Parajo JC (1997) Effect of the carbon source on the carotenoid profiles of Phaffia rhodozyma strains. J Ind Microbiol Biotechnol 19:263–268CrossRefGoogle Scholar
  69. Vendruscolo F, Albuquerque PM, Streit F (2008) Apple pomace: a versatile substrate for biotechnological applications. Crit Rev Biotechnol 28(1):1–12PubMedCrossRefPubMedCentralGoogle Scholar
  70. Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48:1065–1079CrossRefGoogle Scholar
  71. Venil CK, Aruldass CA, Dufosse L, Zakaria ZA, Ahmad WA (2014) Current perspective on bacterial pigments: emerging sustainable compounds with coloring and biological properties for the industry-an incisive evaluation. RSC Adv 4:39523–39529CrossRefGoogle Scholar
  72. Venkatasubramanian S, Vijaeeswarri J, Anna Lakshmi J (2011) Effective natural dye extraction from different plant materials using ultrasound. Ind Crop Prod 33(1):116–122CrossRefGoogle Scholar
  73. Vidyalaksmi R, Paranthaman R, Murugesh S, Singaravadivel K (2009) Microbial bioconversion of rice broken to food grade pigments. Global J Biotechnol Biochem 4:84–87Google Scholar
  74. Yangilar F, Yildiz PO (2016) The final development related microbial pigments and the application in food industry. J Sci Technol 9(1):118–142Google Scholar
  75. Yimyoo T, Yongmanitchai W, Limtong S (2011) Carotenoid production by Rhodosporidium paludigenum DMKU3-LPPPK4 using glycerol as the carbon source. Kasetsart J Nat Sci 45:90–100Google Scholar
  76. Yusof NZ (2008) Isolation and applications of red pigment from Serratia marcescens. B.Sc. thesis, Universiti Teknologi Malaysia, Johor BahruGoogle Scholar
  77. Yusof M (2017) Agro-industrial waste materials and their recycled value added applications: review. In: Martinez LMT et al (eds) Handbook of ecomaterials. Springer, ChamGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Chidambaram Kulandaisamy Venil
    • 1
  • Ponnuswamy Renuka Devi
    • 1
  • Wan Azlina Ahmad
    • 2
  1. 1.Department of BiotechnologyAnna University, Regional Campus - CoimbatoreCoimbatoreIndia
  2. 2.Department of Chemistry, Faculty of ScienceUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations