Advertisement

Production of Unicellular Biomass as a Food Ingredient from Agro-Industrial Waste

  • Hugo Adrián Luna-García
  • José L. Martínez-Hernández
  • Anna Ilyina
  • E. Patricia Segura-Ceniceros
  • Cristóbal N. Aguilar
  • Janeth M. Ventura-Sobrevilla
  • Adriana C. Flores-Gallegos
  • Mónica L. Chávez-GonzálezEmail author
Chapter
  • 32 Downloads
Part of the Applied Environmental Science and Engineering for a Sustainable Future book series (AESE)

Abstract

Humanity has been used microbial biomass for food production and now; for biofuels, drugs, and other useful compounds. Different microorganisms are employed in the production of biomass ranging from bacteria, yeast, fungi, and algae which are used to produce food, bioactive compounds, enzymes, hydrolysates, among others. Due to the accelerated population growth in the world and the need to meet its nutritional requirements, the search for alternatives that help to solve this social problem is one of the most pressing tasks.

Several studies have demonstrated the nutritional value of microbial biomass related to a high protein content, an excellent source of vitamins and minerals necessary for a quality diet. The production of unicellular biomass has been carried out through submerged and solid-state fermentations. For the production of biomass, the design of various culture media has been considered, where different sources of carbon, nitrogen, pH, and aeration level have been some of the evaluated variables that favor the yields of protein production. The use of various agro-industrial waste as carbon source in the biomass production could contribute in solving a problem of accumulation of waste causing soil contamination. This chapter describes the state of the art of unicellular biomass production, microorganisms used, types of fermentation, carbon sources used, agro-industrial residues used as substrate, characteristics of biomass produced and other related topics.

Keywords

Unicellular biomass Microbial protein Agro-industrial waste Fermentation 

Notes

Acknowledgments

The authors like to gratefully acknowledge Mexican Council of Science and Technology (CONACYT) for the financial support of scholarship of HALG.

References

  1. Adelabu BA, Kareem SO, Oluwafemi F, Abideen Adeogun I (2019) Bioconversion of corn straw to ethanol by cellulolytic yeasts immobilized in Mucuna urens matrix. J King Saud Univ Sci 31(1):136–141.  https://doi.org/10.1016/j.jksus.2017.07.005 CrossRefGoogle Scholar
  2. Adoki A (2008) Factors affecting yeast growth and protein yield production from orange, plantain and banana wastes processing residues using Candida sp. Afr J Biotechnol 7(3):290–295.  https://doi.org/10.5897/AJB07.247 CrossRefGoogle Scholar
  3. Ahmed S, Ahmad F, Hashmi AS (2010) Production of microbial biomass protein by sequential culture fermentation of Arachniotus sp., and Candida utilis. Pakistan J Bot 42(2):1225–1234.  https://doi.org/10.1007/s13213-011-0357-8 CrossRefGoogle Scholar
  4. Ajao O, Marinova M, Savadogo O, Paris J (2018) Hemicellulose based integrated forest biorefineries: implementation strategies. Ind Crop Prod 126:250–260.  https://doi.org/10.1016/j.indcrop.2018.10.025 CrossRefGoogle Scholar
  5. Alemu T (2013) Process of optimization and characterization of protein enrichment of orange wastes through solid state fermentation by Aspergillus niger isolate no. 5. J Biol Sci 13(5):341–348.  https://doi.org/10.3923/jbs.2013.341.348 CrossRefGoogle Scholar
  6. Ambat I, Tang WZ, Sillanpää M (2019) Statistical analysis of sustainable production of algal biomass from wastewater treatment process. Biomass Bioenergy 120(Dec 2018):471–478.  https://doi.org/10.1016/j.biombioe.2018.10.016 CrossRefGoogle Scholar
  7. Anupama RP (2000) Value-added food: single cell protein. Biotechnol Adv 18(6):459–479.  https://doi.org/10.1016/S0734-9750(00)00045-8 CrossRefPubMedGoogle Scholar
  8. Anvari M, Khayati G (2011) Submerged yeast fermentation of cheese whey for protein production and nutritional profile analysis. Adv J Food Sci Technol 3(2):122–126Google Scholar
  9. Atkins CA (2016) Nitrogen metabolism. Encycl Food Grains 2:123–128.  https://doi.org/10.1016/b978-0-12-394437-5.00104-2 CrossRefGoogle Scholar
  10. Azam S, Khan Z, Ahmad B, Khan I, Ali J (2014) Production of single cell protein from orange peels using Aspergillus niger and Saccharomyces cerevisiae Pakistan Council of Scientific and Industrial Research Laboratories Complex. Glob J Biotechnol Biochem 9(1):14–18.  https://doi.org/10.5829/idosi.gjbb.2014.9.1.82314 CrossRefGoogle Scholar
  11. Bajpai P (2017a) Carbon fibre from Lignin 77. Springer, Singapore.  https://doi.org/10.1007/978-981-10-4229-4 CrossRefGoogle Scholar
  12. Bajpai P (2017b) Single cell protein production from lignocellulosic biomass. Springer, Singapore.  https://doi.org/10.1007/978-981-10-5873-8 CrossRefGoogle Scholar
  13. Balaman ŞY (2019) Introduction to biomass—resources, production, harvesting, collection, and storage. In: Decision-making for biomass-based production chains. Elsevier, San Diego, pp 1–23.  https://doi.org/10.1016/B978-0-12-814278-3.00001-7 CrossRefGoogle Scholar
  14. Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210.  https://doi.org/10.1016/j.biotechadv.2006.11.002 CrossRefPubMedGoogle Scholar
  15. Bharathiraja S, Suriya J, Krishnan M, Manivasagan P, Kim S-K (2017) Production of enzymes from agricultural wastes and their potential industrial applications. Adv Food Nutr Res 80:125–148.  https://doi.org/10.1016/bs.afnr.2016.11.003 CrossRefPubMedGoogle Scholar
  16. Birch CS, Bonwick GA (2019) Invited review ensuring the future of functional foods. Int J Food Sci Technol 54:1467–1485.  https://doi.org/10.1111/ijfs.14060 CrossRefGoogle Scholar
  17. Bleakley S, Hayes M, Bleakley S, Hayes M (2017) Algal proteins: extraction, application, and challenges concerning production. Foods 6(5):33.  https://doi.org/10.3390/foods6050033 CrossRefGoogle Scholar
  18. Bourdichon F, Casaregola S, Farrokh C et al (2012) Food fermentations: microorganisms with technological beneficial use. Int J Food Microbiol 154(3):87–97.  https://doi.org/10.1016/j.ijfoodmicro.2011.12.030 CrossRefPubMedGoogle Scholar
  19. Bychkov AL, Korolev KG, Lomovsky OI (2010) Obtaining mannanoligosaccharide preparations by means of the mechanoenzymatic hydrolysis of yeast biomass. Appl Biochem Biotechnol 162(7):2008–2014.  https://doi.org/10.1007/s12010-010-8976-2 CrossRefPubMedGoogle Scholar
  20. Catchpole O, Ryan J, Zhu Y et al (2010) The journal of supercritical fluids extraction of lipids from fermentation biomass using near-critical dimethylether. J Supercrit Fluids 53(1–3):34–41.  https://doi.org/10.1016/j.supflu.2010.02.014 CrossRefGoogle Scholar
  21. Chio C, Sain M, Qin W (2019) Lignin utilization: a review of lignin depolymerization from various aspects. Renew Sust Energ Rev 107:232–249.  https://doi.org/10.1016/j.rser.2019.03.008 CrossRefGoogle Scholar
  22. Choi MH, Park YH (1999) Growth of Pichia guilliermondii A9, an osmotolerant yeast, in waste brine generated from kimchi production. Bioresour Technol 70(3):231–236.  https://doi.org/10.1016/S0960-8524(99)00049-8 CrossRefGoogle Scholar
  23. Couto SR, Sanromán MÁ (2006) Application of solid-state fermentation to food industry—a review. J Food Eng 76(3):291–302.  https://doi.org/10.1016/j.jfoodeng.2005.05.022 CrossRefGoogle Scholar
  24. de Assis LR, Calijuri ML, Assemany PP, Berg EC, Febroni LV, Bartolomeu TA (2019) Evaluation of the performance of different materials to support the attached growth of algal biomass. Algal Res 39:101440.  https://doi.org/10.1016/j.algal.2019.101440 CrossRefGoogle Scholar
  25. Denny A, Aisbitt B, Lunn J (2008) Mycoprotein and health. Nutr Bull 33(4):298–310.  https://doi.org/10.1111/j.1467-3010.2008.00730.x CrossRefGoogle Scholar
  26. Dharumadurai D, Subramaniyan L, Subhasish S, Nooruddin T, Annamalai P (2011) Production of single cell protein from pineapple waste using yeast. Innov Rom Food Biotechnol 8:26–32Google Scholar
  27. Dos Reis KC, Coimbra JM, Duarte WF, Schwan RF, Silva CF (2018) Biological treatment of vinasse with yeast and simultaneous production of single-cell protein for feed supplementation. Int J Environ Sci Technol 16(2):1–12.  https://doi.org/10.1007/s13762-018-1709-8 CrossRefGoogle Scholar
  28. Dufossé L (2018) Red colourants from filamentous fungi: are they ready for the food industry? J Food Compos Anal 69(April 2017):156–161.  https://doi.org/10.1016/j.jfca.2017.11.002 CrossRefGoogle Scholar
  29. Ebringerova A, Hromadkova Z, Heinze T, Ebringerová A, Hromádková Z, Heinze T (2005) Hemicellulose. Adv Polym Sci 186:1–67.  https://doi.org/10.1007/b136816 CrossRefGoogle Scholar
  30. Egli T (2009) Nutrition, microbial. In: Encyclopedia of microbiology. Elsevier, Amsterdam, pp 308–324.  https://doi.org/10.1016/B978-012373944-5.00083-3 CrossRefGoogle Scholar
  31. Faife-Pérez E, Otero-Rambla MA, Alvarez-Delgado A (2012) Producción de Biodiesel a Partir de Microorganismos Oleaginosos. Parte l: Levaduras y bacterias. ICIDCA Sobre los Deriv la Caña Azúcar 46:26–35Google Scholar
  32. FAO (2011) Objetivo: acabar con las pérdidas y desperdicios de alimentos en la cadena de producción. http://www.fao.org/in-action/seeking-end-to-loss-and-waste-of-food-along-production-chain/es/. Accessed 9 May 2019
  33. Farinas CS (2015) Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renew Sust Energ Rev 52:179–188.  https://doi.org/10.1016/j.rser.2015.07.092 CrossRefGoogle Scholar
  34. Fatemeh S, Reihani S, Khosravi-Darani K (2018) Mycoprotein production from date waste using Fusarium venenatum in a submerged culture. Applied Food Biotechnology 5(4):243–252Google Scholar
  35. Finnigan T, Needham L, Abbott C (2017) Mycoprotein. In: Sustainable protein sources. Elsevier, Amsterdam, pp 305–325.  https://doi.org/10.1016/B978-0-12-802778-3.00019-6 CrossRefGoogle Scholar
  36. Fleet GH (2011) Yeast spoilage of foods and beverages. In: The yeasts. Elsevier, Amsterdam, pp 53–63.  https://doi.org/10.1016/B978-0-444-52149-1.00005-7 CrossRefGoogle Scholar
  37. García-Garibay M, Gómez-Ruiz L, Cruz-Guerrero AE, Bárzana E (2014) SINGLE CELL PROTEIN | yeasts and bacteria. In: Encyclopedia of food microbiology. Elsevier, Cambridge, pp 431–438.  https://doi.org/10.1016/B978-0-12-384730-0.00310-4 CrossRefGoogle Scholar
  38. Hashemian M, Ahmadzadeh H, Hosseini M, Lyon S, Pourianfar HR (2019) Production of microalgae-derived high-protein biomass to enhance food for animal feedstock and human consumption. In: Advanced bioprocessing for alternative fuels, biobased chemicals, and bioproducts. Elsevier, Duxford, pp 393–405.  https://doi.org/10.1016/B978-0-12-817941-3.00020-6 CrossRefGoogle Scholar
  39. He Y, Wu T, Wang X, Chen B, Chen F (2018) Cost-effective biodiesel production from wet microalgal biomass by a novel two-step enzymatic process. Bioresour Technol 268:583–591.  https://doi.org/10.1016/j.biortech.2018.08.038 CrossRefPubMedGoogle Scholar
  40. Houghton RA (2008) Biomass. In: Encyclopedia of ecology. Elsevier, Amsterdam, pp 253–257.  https://doi.org/10.1016/B978-0-444-63768-0.00462-5 CrossRefGoogle Scholar
  41. Jach ME, Serefko A (2018) Nutritional yeast biomass: characterization and application. In: Diet, microbiome and health. Elsevier, Amsterdam, pp 237–270.  https://doi.org/10.1016/B978-0-12-811440-7.00009-0 CrossRefGoogle Scholar
  42. Kampen WH (2014) Nutritional requirements in fermentation processes. In: Fermentation and biochemical engineering handbook. Elsevier, Amsterdam, pp 37–57.  https://doi.org/10.1016/B978-1-4557-2553-3.00004-0 CrossRefGoogle Scholar
  43. Kavitha S, Subbulakshmi P, Rajesh Banu J, Gobi M, Tae Yeom I (2017) Enhancement of biogas production from microalgal biomass through cellulolytic bacterial pretreatment. Bioresour Technol 233:34–43.  https://doi.org/10.1016/j.biortech.2017.02.081 CrossRefPubMedGoogle Scholar
  44. Kay RA, Barton LL (1991) Microalgae as food and supplement. Crit Rev Food Sci Nutr 30(6):555–573.  https://doi.org/10.1080/10408399109527556 CrossRefPubMedGoogle Scholar
  45. Kieliszek M, Kot AM, Bzducha-Wróbel A, BŁażejak S, Gientka I, Kurcz A (2017) Biotechnological use of Candida yeasts in the food industry: a review. Fungal Biol Rev 31(4):185–198.  https://doi.org/10.1016/j.fbr.2017.06.001 CrossRefGoogle Scholar
  46. Kiessling A, Askbrandt S (1993) Nutritive value of two bacterial strains of single-cell protein for rainbow trout (Oncorhynchus mykiss). Aquaculture 109(2):119–130.  https://doi.org/10.1016/0044-8486(93)90209-H CrossRefGoogle Scholar
  47. Kushwaha S, Singh R, Suhas CM, Carrott PJM, Gupta VK (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresour Technol 216:1066–1076.  https://doi.org/10.1016/j.biortech.2016.05.106 CrossRefPubMedGoogle Scholar
  48. Li Z, Wang D, Shi YC (2017) Effects of nitrogen source on ethanol production in very high gravity fermentation of corn starch. J Taiwan Inst Chem Eng 70:229–235.  https://doi.org/10.1016/j.jtice.2016.10.055 CrossRefGoogle Scholar
  49. Liu F, Tian Y, Ding Y, Li Z (2016) Bioresource technology the use of fermentation liquid of wastewater primary sedimentation sludge as supplemental carbon source for denitrification based on enhanced anaerobic fermentation. Bioresour Technol 219:6–13.  https://doi.org/10.1016/j.biortech.2016.07.030 CrossRefPubMedGoogle Scholar
  50. Lübbert A (2017) Measurement and characterization of microbial biomass. In: Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 705–724.  https://doi.org/10.1016/B978-0-444-63663-8.00024-0 CrossRefGoogle Scholar
  51. Lum KK, Kim J, Lei XG (2013) Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J Anim Sci Biotechnol 4(1):1–7.  https://doi.org/10.1186/2049-1891-4-53 CrossRefGoogle Scholar
  52. Marin-Batista JD, Villamil JA, Rodriguez JJ, Mohedano AF, de la Rubia MA (2019) Valorization of microalgal biomass by hydrothermal carbonization and anaerobic digestion. Bioresour Technol 274:395–402.  https://doi.org/10.1016/j.biortech.2018.11.103 CrossRefPubMedGoogle Scholar
  53. Martínez EJ, Rosas JG, Sotres A et al (2018) Codigestion of sludge and citrus peel wastes: evaluating the effect of biochar addition on microbial communities. Biochem Eng J 137:314–325.  https://doi.org/10.1016/j.bej.2018.06.010 CrossRefGoogle Scholar
  54. Molina Grima E, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolies process options and economics. Biotechnol Adv 20:491–515CrossRefGoogle Scholar
  55. Moo-Young M, Gregory KF (1986) Microbial biomass proteins. Elsevier, London, pp 19–26Google Scholar
  56. Moo-Young M, Chisti Y, Vlach D (1993) Fermentation of cellulosic materials to mycoprotein foods. Biotechnol Adv 11(3):469–479.  https://doi.org/10.1016/0734-9750(93)90015-F CrossRefPubMedGoogle Scholar
  57. Motaung TE, Linganiso LZ (2018) Critical review on Agrowaste cellulose applications for biopolymers. Int J Plast Technol 22:185–216.  https://doi.org/10.1007/s12588-018-9219-6 CrossRefGoogle Scholar
  58. Muys M, Sui Y, Schwaiger B et al (2018) Bioresource technology high variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies. Bioresour Technol 275:247–257.  https://doi.org/10.1016/j.biortech.2018.12.059 CrossRefPubMedGoogle Scholar
  59. Nasseri AT, Rasoul-Amini S, Morrowvat MH, Ghasemi Y (2011) Single cell: protein production and process. Am J Food Technol 6:103–116CrossRefGoogle Scholar
  60. Nigam JN (2000) Cultivation of Candida langeronii in sugar cane bagasse hemicellulosic hydrolyzate for the production of single cell protein. World J Microbiol Biotechnol 16(4):367–372.  https://doi.org/10.1023/A:1008922806215 CrossRefGoogle Scholar
  61. Nigam PS, Singh A (2014) Single cell protein | Mycelial fungi. In: Encyclopedia of food microbiology. Elsevier, Amsterdam, pp 415–424.  https://doi.org/10.1016/B978-0-12-384730-0.00311-6 CrossRefGoogle Scholar
  62. Ohkouchi N, Takano Y (2014) Organic nitrogen: sources, fates, and chemistry. In: Treatise on geochemistry. Elsevier, Amsterdam, pp 251–289.  https://doi.org/10.1016/B978-0-08-095975-7.01015-9 CrossRefGoogle Scholar
  63. Oshoma C, Eguakun-Owie SO (2018) Conversion of food waste to single cell protein using Aspergillus niger. J Appl Sci Environ Manag 22(3):350–355.  https://doi.org/10.4314/jasem.v22i3.10 CrossRefGoogle Scholar
  64. Patel S, Shukla S (2017) Fermentation of food wastes for generation of nutraceuticals and supplements. In: Fermented foods in health and disease prevention. Elsevier, Amsterdam, pp 707–734.  https://doi.org/10.1016/B978-0-12-802309-9.00030-3 CrossRefGoogle Scholar
  65. Paula A, Gouveia L, Bandarra NM, Franco JM, Raymundo A (2013) Comparison of microalgal biomass pro fi les as novel functional ingredient for food products. Algal Res 2(2):164–173.  https://doi.org/10.1016/j.algal.2013.01.004 CrossRefGoogle Scholar
  66. Pérez-Torrado R, Gamero E, Gómez-Pastor R, Garre E, Aranda A, Matallana E (2015) Yeast biomass, an optimised product with myriad applications in the food industry. Trends Food Sci Technol 46(2):167–175.  https://doi.org/10.1016/j.tifs.2015.10.008 CrossRefGoogle Scholar
  67. Popa VI (2018) Biomass for fuels and biomaterials. In: Biomass as renewable raw material to obtain bioproducts of high-tech value. Elsevier, Amsterdam, pp 1–37.  https://doi.org/10.1016/B978-0-444-63774-1.00001-6 CrossRefGoogle Scholar
  68. Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae - a review. J Algal Biomass Utln 3(4):89–100.  https://doi.org/10.1016/j.(73) CrossRefGoogle Scholar
  69. Rai AK, Pandey A, Sahoo D (June 2018) Biotechnological potential of yeasts in functional food industry. Trends Food Sci Technol 2019(83):129–137.  https://doi.org/10.1016/j.tifs.2018.11.016 CrossRefGoogle Scholar
  70. Rajendran S, Kapilan R, Vasantharuba S (2018) Single cell protein production from papaw and banana fruit juices using baker’s yeast. J Agric Environ Sci 18(4):168–172.  https://doi.org/10.5829/idosi.aejaes.2018.168.172 CrossRefGoogle Scholar
  71. Ramanna L, Rawat I, Bux F (2017) Light enhancement strategies improve microalgal biomass productivity. Renew Sust Energ Rev 80:765–773.  https://doi.org/10.1016/j.rser.2017.05.202 CrossRefGoogle Scholar
  72. Rasouli Z, Valverde-Pérez B, D’Este M, De Francisci D, Angelidaki I (2018) Nutrient recovery from industrial wastewater as single cell protein by a co-culture of green microalgae and methanotrophs. Biochem Eng J 134:129–135.  https://doi.org/10.1016/j.bej.2018.03.010 CrossRefGoogle Scholar
  73. Reihani SFS, Khosravi-Darani K (2018) Influencing factors on single cell protein production by submerged fermentation: a review. Electron J Biotechnol 37:34–40.  https://doi.org/10.1016/j.ejbt.2018.11.005 CrossRefGoogle Scholar
  74. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37(1):19–27.  https://doi.org/10.1016/j.renene.2011.06.045 CrossRefGoogle Scholar
  75. Schulz E, Oslage HJ (1976) Composition and nutritive value of single-cell protein (SCP). Anim Feed Sci Technol 1(1):9–24.  https://doi.org/10.1016/0377-8401(76)90003-1 CrossRefGoogle Scholar
  76. Sharma HK, Xu C, Qin W (2019) Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valor 10(2):235–251.  https://doi.org/10.1007/s12649-017-0059-y CrossRefGoogle Scholar
  77. Shields RJ, Lupatsch I (2012) Algae for aquaculture and animal feeds. In: Microalgal biotechnology: integration and econom. Walter de Gruyter, Boston, pp 23–37Google Scholar
  78. Shields-Menard SA, Amirsadeghi M, French WT, Boopathy R (2018) A review on microbial lipids as a potential biofuel. Bioresour Technol 259:451–460.  https://doi.org/10.1016/j.biortech.2018.03.080 CrossRefPubMedGoogle Scholar
  79. Shipman RH, Kao IC, Fan LT (1975) Single-cell protein production by photosynthetic bacteria cultivation in agricultural by-products. Biotechnol Bioeng 17(11):1561–1570.  https://doi.org/10.1002/bit.260171102 CrossRefGoogle Scholar
  80. Shojaosadati SA, Khalilzadeh R, Sanaei HR (1998) Optimizing of SCP production from sugar beet stillage using isolated yeast. Iran J Chem Chem Eng 17(2):73–80Google Scholar
  81. Singh S, Singh B, Mishra BK, Pandey AK, Nain L (2012) Microbes in agrowaste management for sustainable agriculture. In: Microorganisms in sustainable agriculture and biotechnology. Springer, Dordrecht.  https://doi.org/10.1007/978-94-007-2214-9 CrossRefGoogle Scholar
  82. Singh P, Guldhe A, Kumari S, Rawat I, Bux F (2016) Combined metals and EDTA control: an integrated and scalable lipid enhancement strategy to alleviate biomass constraints in microalgae under nitrogen limited conditions. Energy Convers Manag 114:100–109.  https://doi.org/10.1016/j.enconman.2016.02.012 CrossRefGoogle Scholar
  83. Singh V, Sahu PK, Singh DP, Prabha R, Renu S (2019) Agrowaste bioconversion and microbial fortification have prospects for soil health, crop productivity, and eco-enterprising. Int J Recycl Org Waste Agric Lal 2015:1–16.  https://doi.org/10.1007/s40093-019-0243-0 CrossRefGoogle Scholar
  84. Soccol CR, Scopel E, Alberto L et al (2017) Recent developments and innovations in solid state fermentation. Biotechnol Res Innov 1(1):52–71.  https://doi.org/10.1016/j.biori.2017.01.002 CrossRefGoogle Scholar
  85. Spalvins K, Zihare L, Blumberga D (2018) Single cell protein production from waste biomass: comparison of various industrial by-products. Energy Procedia 147:409–418.  https://doi.org/10.1016/j.egypro.2018.07.111 CrossRefGoogle Scholar
  86. Stanbury PF, Whitaker A, Hall SJ (2017) Media for industrial fermentations. In: Principles of fermentation technology. Elsevier, Amsterdam, pp 213–272.  https://doi.org/10.1016/B978-0-08-099953-1.00004-1 CrossRefGoogle Scholar
  87. Subramaniyam R, Vimala R (2012) Solid state and submerged fermentation for the production of bioactive substances: a comparativity study. Int J Sci Nat 3(3):480–486. www.scienceandnature.org Google Scholar
  88. Suntornsuk W (2000) Yeast cultivation in lettuce brine. World J Microbiol Biotechnol 16:815–818. http://sci-hub.se/https://doi.org/10.1023/A:1008926700452. Accessed May 7, 2019CrossRefGoogle Scholar
  89. Ugalde UO, Castrillo JI (2002) Single cell proteins from fungi and yeasts. Appl Mycol Biotechnol 2:123–149.  https://doi.org/10.1016/S1874-5334(02)80008-9 CrossRefGoogle Scholar
  90. Ummartyotin S, Manuspiya H (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Renew Sust Energ Rev 41:402–412.  https://doi.org/10.1016/j.rser.2014.08.050 CrossRefGoogle Scholar
  91. Vanthoor-koopmans M, Wijffels RH, Barbosa MJ, Eppink MHM (2013) Bioresource technology biorefinery of microalgae for food and fuel. Bioresour Technol 135:142–149.  https://doi.org/10.1016/j.biortech.2012.10.135 CrossRefPubMedGoogle Scholar
  92. Vrati S (1984) Single cell protein production by photosynthetic bacteria grown on the clarified effluents of biogas plant. Appl Microbiol Biotechnol 19(3):199–202.  https://doi.org/10.1007/BF00256454 CrossRefGoogle Scholar
  93. Walsh MJ, Gerber L, Doren V, Shete N, Prakash A, Salim U (2018) Financial tradeoffs of energy and food uses of algal biomass under stochastic conditions. Appl Energy 210:591–603.  https://doi.org/10.1016/j.apenergy.2017.08.060 CrossRefGoogle Scholar
  94. Yang M, Zheng S (2014) Pollutant removal-oriented yeast biomass production from high-organic-strength industrial wastewater: a review. Biomass Bioenergy 64:356–362.  https://doi.org/10.1016/j.biombioe.2014.03.020 CrossRefGoogle Scholar
  95. Yatmaz E, Turhan I (2018) Carob as a carbon source for fermentation technology. Biocatal Agric Biotechnol 16:200–208.  https://doi.org/10.1016/j.bcab.2018.08.006 CrossRefGoogle Scholar
  96. Yellapu SK, Bezawada J, Kaur R, Kuttiraja M, Tyagi RD (2016) Detergent assisted lipid extraction from wet yeast biomass for biodiesel: a response surface methodology approach. Bioresour Technol 218:667–673.  https://doi.org/10.1016/j.biortech.2016.07.011 CrossRefPubMedGoogle Scholar
  97. Zabed HM, Akter S, Yun J et al (2019) Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew Sust Energ Rev 105:105–128.  https://doi.org/10.1016/j.rser.2019.01.048 CrossRefGoogle Scholar
  98. Zaki M, Said SD (2018) Trichoderma Reesei single cell protein production from rice straw pulp in solid state fermentation. IOP Conf Ser Mater Sci Eng 345(1):012043.  https://doi.org/10.1088/1757-899X/345/1/012043 CrossRefGoogle Scholar
  99. Zhou W, Li Y, Min M et al (2012) Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Appl Energy 98:433–440.  https://doi.org/10.1016/j.apenergy.2012.04.005 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hugo Adrián Luna-García
    • 1
    • 2
  • José L. Martínez-Hernández
    • 2
  • Anna Ilyina
    • 2
  • E. Patricia Segura-Ceniceros
    • 2
  • Cristóbal N. Aguilar
    • 1
  • Janeth M. Ventura-Sobrevilla
    • 3
  • Adriana C. Flores-Gallegos
    • 1
  • Mónica L. Chávez-González
    • 1
    • 2
    Email author
  1. 1.Bioprocesses and Bioproducts Research Group, Food Research Department, School of ChemistryAutonomous University of CoahuilaSaltilloMexico
  2. 2.Nanobioscience Group, School of ChemistryAutonomous University of CoahuilaSaltilloMexico
  3. 3.School of Health ScienceAutonomous University of CoahuilaPiedras NegrasMexico

Personalised recommendations