Advertisement

An Early Detection Model for a Brain Tumor-Is (Immune System) Interaction with Fuzzy Initial Values

  • Fatma Berna Benli
  • Onur Alp İlhanEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1111)

Abstract

In this paper, we adopt a model by including fuzzy initial values to study the interaction of a monoclonal brain tumor and the macrophages for an early detection treatment. Numerical simulations will give detailed information on the behavior of the model at the end of the paper. We perform all the computations in this study with the help of the Maple software.

Keywords

Fuzzy number Fuzzy derivative Fuzzy differential equations (FDE) Fuzzy initial values 

2000 AMS Classification

05C38 15A15 

References

  1. 1.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  2. 2.
    Kandel, A., Byatt, W.J.: Fuzzy differential equations. In: Proceedings of the International Conference on Cybernetics and Society, Tokyo, Japan, pp. 1213–1216 (1978)Google Scholar
  3. 3.
    Hüllerheimer, E.: An approach to modeling and simulation of uncertain dynamical systems. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 5(2), 117–137 (1997)CrossRefGoogle Scholar
  4. 4.
    Bede, B., Gal, S.: Generalizations of differentiability of fuzzy number valued functions with applications to fuzzy differential equation. Fuzzy Sets Syst. 151, 581–599 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bede, B., et al.: First order linear fuzzy differential equations under generalized differentiability. Inform. Sci. 177, 1648–1662 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Khastan, A., Bahrami, F., Ivaz, K.: New results on multiple solutions for nth-order fuzzy differential equations under generalized differentiability, boundary value problems, Article ID 395714 (2009)Google Scholar
  7. 7.
    El-Gohary, A.: Chaos and optimal control of cancer self-remission and tumor system steady states. Chaos Solutions Fractals 37, 1305–1316 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Holland, E.C.: Glioblastoma multiforme, the terminator. Proc. Nat. Acad. Sci. 97, 6242–6244 (2000)CrossRefGoogle Scholar
  9. 9.
    Birkhuad, B.G., et al.: A mathematical model of the development of drug resistance to cancer chemotherapy. Eur. J. Cancer Clin. Oncol. 23, 1421–1427 (1987)Google Scholar
  10. 10.
    Coldman, A.J., Goldiec, J.H.: A mathematical model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat. Rep. 63, 1727–1731 (1979)Google Scholar
  11. 11.
    Schmitz, E., Kansal, A.R., Torquato, S.: A cellular automaton of brain tumor treatment and resistance. J. Theor. Med. 4(4), 223–239 (2002)Google Scholar
  12. 12.
    Bozkurt, F.: Modeling a tumor growth with piecewise constant arguments. Discret. Dyn. Nat. Soc. 1–8 (2013). Article ID 841764Google Scholar
  13. 13.
    Bozkurt, F.: Stability analysis of a fractional-order differential equation system of a GBM-IS interaction depending on the density. Appl. Math. Inf. Sci. 8(3), 1–8 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Bozkurt, F.: A mathematical model of the brain tumor GBM and IS interaction. Int. J. Math. Comput. 22(1), 58–65 (2014)Google Scholar
  15. 15.
    Akın, Ö., Oruç, Ö.: A prey predator model with fuzzy initial values. Hacettepe J. Math. Stat. 41(3), 387–395 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Akın, Ö., et al.: Expert Syst. Appl. 40, 953–957 (2013)CrossRefGoogle Scholar
  17. 17.
    Ahmad, M.Z., De Baets, B.: A Prey-Predator Model with Fuzzy Initial Populations. IFSA EUSFLAT (2009)Google Scholar
  18. 18.
    Liu, X., Lou, Y.: Global dynamics of a predator-prey model. J. Math. Anal. Appl. 371(1), 323–340 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Peixoto, M.S., Barros, L.C., Baasanezi, R.C.: Predator-prey model. Ecol. Model. 214, 39–44 (2008)Google Scholar
  20. 20.
    Benli, F.B., Keskin, Ö.: A tumor-macrophage interaction model with fuzzy initial values. AIP Conf. Proc. 1648 (2015). Article ID 370007Google Scholar
  21. 21.
    Gal, S.G.: Approximation theory in fuzzy setting. In: Anastassiou, G.A. (ed.) Handbook of Analytic-Computational Methods in Applied Mathematics, pp. 617–666. Chapman & Hall/CRC Press, Boca Raton (2000)Google Scholar
  22. 22.
    Wu, C., Gong, Z.: On Henstock integral of fuzzy-number-valued functions (I). Fuzzy Sets Syst. 120, 523–532 (2001)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Puri, M., Ralescu, D.: Differential and fuzzy functions. J. Math. Anal. Appl. 91, 552–558 (1983)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Chalco-Cano, Y., Roman-Flores, H.: On the new solution of fuzzy differential equations. Chaos Solitons Fractals 38, 112–119 (2006)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kaleva, O.: Fuzzy differential equations. Fuzzy Sets Syst. 24, 301–317 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of EducationErciyes UniversityKayseriTurkey

Personalised recommendations