Advertisement

An Efficient Computational Technique for Nonlinear Emden-Fowler Equations Arising in Astrophysics and Space Science

  • Sumit Gupta
  • Devendra KumarEmail author
  • Jagdev Singh
  • Sushila
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1111)

Abstract

In the present article, we suggest an efficient computational scheme to examine nonlinear Emden-Fowler equations arising in astrophysics and space science. The suggested scheme is based on a modified theory of the Adomian polynomials, and the two steps Adomian decomposition technique mixed with the padé approximant. Moreover, a maple software package ADMP is used to apply the suggested computational scheme, which is very simple to perform and well organized. The input of the system requires initial or boundary conditions and many desired parameters to find the analytic approximate solutions within a very short time. The following algorithm does not require linearization, perturbations, guessing the initial terms and any restrictive supposition, which may leads the solutions in closed form. Several examples are discussed to illustrate the reliability of the algorithm.

Keywords

Emden Fowler equations Lane Emden type equations Astrophysics ADM TSADM Adomian polynomials 

Notes

Acknowledgement

Authors are sincerely thankful to Dr. Yezhi Lin (Department of Computer Science and Technology, East China Normal University, Shanghai 200241, PR China), for his kind help and support to complete the manuscript.

References

  1. 1.
    Lin, Y., Liu, Y., Li, Z.: Symbolic computation of analytic approximate solution of nonlinear fractional differential equations. Comput. Phys. Commun. 184, 130–141 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 257–262 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Kumar, D., Singh, J., Baleanu, D.: A new numerical algorithm for fractional Fitzhugh–Nagumo equation arising in transmission of nerve impulses. Nonlinear Dyn. 91, 307–317 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    He, J.H.: Variational iteration method-a kind of nonlinear analytical technique: Some examples. Int. J. Nonlinear Mech. 34(3), 699–708 (1999)zbMATHCrossRefGoogle Scholar
  5. 5.
    Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman & Hall/CRC Press, Boca Raton (2003)CrossRefGoogle Scholar
  6. 6.
    Kumar, D., Agarwal, R.P., Singh, J.: A modified numerical scheme and convergence analysis for fractional model of Lienard’s equation. J. Comput. Appl. Math. 339, 405–413 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Zhou, J.K.: Differential Transformation and Its Applications for Electrical Circuits. Huazhong University Press, Wuhan (1986)Google Scholar
  8. 8.
    Kumar, D., Singh, J., Baleanu, D., Rathore, S.: Analysis of a fractional model of Ambartsumian equation. Eur. J. Phys. Plus 133, 259 (2018)CrossRefGoogle Scholar
  9. 9.
    Gupta, S., Kumar, D., Singh, J.: MHD mixed convective stagnation point flow and heat transfer of an incompressible nanofluid over an inclined stretching sheet with chemical reaction and radiation. Int. J. Heat Mass Transf. 118, 378–387 (2018)CrossRefGoogle Scholar
  10. 10.
    Singh, J., Kumar, D., Baleanu, D., Rathore, S.: An efficient numerical algorithm for the fractional Drinfeld-Sokolov-Wilson equation. Appl. Math. Comput. 335, 12–24 (2018)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Dordrecht (1994)zbMATHCrossRefGoogle Scholar
  12. 12.
    El-Sayed, S.M., Kaya, D.: Exact and numerical travelling wave solution of Whitham-Broer-Kaup equations. Appl. Math. Comput. 167, 1339–1349 (2005)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Bougoffa, L., Bougoffa, S.: Adomian method for solving some coupled systems of equations. Appl. Math. Comput. 177, 553–560 (2006)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Srivastava, H.M., Kumar, D., Singh, J.: An efficient analytical technique for fractional model of vibration equation. Appl. Math. Model. 45, 192–204 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Singh, J., Kumar, D., Qurashi, M.A., Baleanu, D.: A novel numerical approach for a nonlinear fractional dynamical model of interpersonal and romantic relationships. Entropy 19(7), 375 (2017)CrossRefGoogle Scholar
  16. 16.
    Wazwaz, A.M.: A comparison between Adomian-decomposition method and Taylor’s series method in series solution. Appl. Math. Comput. 197, 37–44 (1998)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Saravanan, A., Magesh, N.: A comparison between reduced differential transform method and Adomian decomposition method for the Newell-Whitehead-Segel equation. J. Egypt. Math. Soc. 21(3), 259–265 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Noor, M.A., Noor, K.I., Waseem, M.: A new decomposition method for solving a system of linear equation. J. Assoc. Arab Univ. Basic Appl. Sci. 16, 27–33 (2014)Google Scholar
  19. 19.
    Gejji, V.D., Jafari, H.: Adomian decomposition method: a tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 301, 508–518 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Singh, R., Nelakanti, G., Kumar, J.: Approximate solution of Urysohn integral equation using the Adomian decomposition method. World Sci. J. 2014, 6 (2014). Article ID 150483Google Scholar
  21. 21.
    Wazwaz, A.M.: A reliable modification of Adomian decomposition method. Appl. Math. Comput. 102, 77–86 (1999)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Luo, X.: A two step Adomian decomposition method. Appl. Math. Comput. 170(1), 570–583 (2005)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Zhang, B., Wu, Q., Luo, X.: Experimentation with two step Adomian decomposition method. Appl. Math. Comput. 175(2), 1495–1502 (2009)zbMATHGoogle Scholar
  24. 24.
    Babolian, E., Javidi, S.: New method for calculating Adomian polynomials. Appl. Math. Comput. 153(1), 253–259 (2004)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Gu, H., Li, Z.: A modified Adomian method for system of nonlinear differential equations. Appl. Math. Comput. 187(2), 748–755 (2007)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Rach, R.: A new definition of the Adomian polynomials. Kybernetes 37, 910–955 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Davis, H.T.: Introduction to Nonlinear Differential and Integral Equations. Dover, New York (1962)Google Scholar
  28. 28.
    Demir, H., Sungrii, I.C.: Numerical solution of a class of nonlinear Emden-Fowler equation by differential transform method. J. Arts Sci. 12, 75–81 (2009)Google Scholar
  29. 29.
    Wazwaz, A.M.: Adomian decomposition method for a reliable treatment of the Emden-Fowler equation. Appl. Math. Comput. 161(2), 543–560 (2005)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Chowdhury, M.S.H., Hashim, I.: Solutions of Emden-Fowler equation by homotopy perturbation method. Nonlinear Anal. RWA 10(1), 104–115 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Khan, J.A., Raja, M.A., Qureshi, I.M.: Numerical treatment of nonlinear Emden-Fowler equation using stochastic technique. Ann. Math. Artif. Intell. 63(2), 185–207 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Wazwaz, A.M.: The variational iteration method for solution of system of equations of Emden-Fowler type. Int. J. Comput. Math. 88(16), 3406–3415 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Lima, P.M.: Numerical method and asymptotic error expansion for Emden-Fowler equation. J. Comput. Appl. Math. 70(2), 245–266 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Chandrasekhar, S.: Introduction to the Study of Stellar Structure. Dover Publications, New York (1967)Google Scholar
  35. 35.
    Richardson, O.U.: The Emission of Electricity from Hot Bodies. Longsman’s Green and Company, London (1921)Google Scholar
  36. 36.
    Pozzi, A., Bassano, E.: Application of Pade approximants to the study of plane jets. Comput. Math Appl. 30(11), 107–123 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Abbaoui, K., Cherrault, Y.: Convergence of Adomian’s method applied to differential equations. Comput. Math Appl. 28(5), 103–109 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Benabidallah, M., Cherrault, Y.: Application of Adomian method for solving a class of boundary problems. Kybernetes 33(1), 118–132 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Gupta, S., Kumar, D., Singh, J.: ADMP: a maple package for symbolic computation and error estimating to singular two-point boundary value problems with initial conditions. Proc. Nat. Acad. Sci. Phys. Sci. A (2018).  https://doi.org/10.1007/s40010-018-0540-4MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sumit Gupta
    • 1
  • Devendra Kumar
    • 2
    Email author
  • Jagdev Singh
    • 3
  • Sushila
    • 4
  1. 1.Department of MathematicsSwami Keshvanand Institute of Technology, Management and GramothanJaipurIndia
  2. 2.Department of MathematicsUniversity of RajasthanJaipurIndia
  3. 3.Department of MathematicsJECRC UniversityJaipurIndia
  4. 4.Department of PhysicsVivekananda Global UniversityJaipurIndia

Personalised recommendations