Advertisement

Some Novel Solutions of the Coupled Whitham-Broer-Kaup Equations

  • Hezha H. AbdulkareemEmail author
  • Hajar F. Ismael
  • Etibar Sadi Panakhov
  • Hasan Bulut
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1111)

Abstract

The shallow water equations provide a vast range of applications in the ocean, atmospheric modeling, and pneumatic computing, which can also be utilized to modeling flows in rivers and coastal areas. The Bernoulli sub-equation function method is utilized to build the analytic solutions of the (1+1) dimensional coupled Whitham-Broer-Kaup (WBK) equations. This partial differential equation model is translated into ordinary differential equations in order to construct new exponential prototype structures. As a result, the novel results are obtained and then plotted in 3D and 2D surfaces.

Keywords

Nonlinear Whitham-Broer-Kaup equation Bernoulli sub-equation method Exponential solution 

References

  1. 1.
    Sulaiman, T.A., Bulut, H., Yokus, A., Baskonus, H.M.: On the exact and numerical solutions to the coupled Boussinesq equation arising in ocean engineering. Indian J. Phys. (2019).  https://doi.org/10.1007/s12648-018-1322-1CrossRefGoogle Scholar
  2. 2.
    Yokus, A., Baskonus, H.M., Sulaiman, T.A., Bulut, H.: Numerical simulation and solutions of the two-component second order KdV evolutionarysystem. Numer. Methods Partial Differ. Equ. (2018).  https://doi.org/10.1002/num.22192zbMATHCrossRefGoogle Scholar
  3. 3.
    Yousif, M.A., Mahmood, B.A., Ali, K.K., Ismael, H.F.: Numerical simulation using the homotopy perturbation method for a thin liquid film over an unsteady stretching sheet. Int. J. Pure Appl. Math. 107(2), 289–300 (2016).  https://doi.org/10.12732/ijpam.v107i2.1 CrossRefGoogle Scholar
  4. 4.
    Bulut, H., Ergüt, M., Asil, V., Bokor, R.H.: Numerical solution of a viscous incompressible flow problem through an orifice by Adomian decomposition method. Appl. Math. Comput. 153(3), 733–741 (2004)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Ismael, H.F., Ali, K.K.: MHD casson flow over an unsteady stretching sheet. Adv. Appl. Fluid Mech. (2017).  https://doi.org/10.17654/FM020040533CrossRefGoogle Scholar
  6. 6.
    Baskonus, H.M., Bulut, H.: On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method. Open Math. (2015).  https://doi.org/10.1515/math-2015-0052MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bueno-Orovio, A., Pérez-García, V.M., Fenton, F.H.: Spectral methods for partial differential equations in irregular domains: the spectral smoothed boundary method. SIAM J. Sci. Comput. 28(3), 886–900 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Kocak, Z.F., Bulut, H. and Yel, G.: The solution of fractional wave equation by using modified trial equation method and homotopy analysis method, in AIP Conference Proceedings (2014)Google Scholar
  9. 9.
    Nofal, T.A.: An approximation of the analytical solution of the Jeffery-Hamel flow by homotopy analysis method. Appl. Math. Sci. 5(53), 2603–2615 (2011)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ismael, H.F.: Carreau-Casson fluids flow and heat transfer over stretching plate with internal heat source/sink and radiation. Int. J. Adv. Appl. Sci. J. 6(2), 81–86 (2017).  https://doi.org/10.1371/journal.pone.0002559CrossRefGoogle Scholar
  11. 11.
    Ali, K.K., Ismael, H.F., Mahmood, B.A., Yousif, M.A.: MHD Casson fluid with heat transfer in a liquid film over unsteady stretching plate. Int. J. Adv. Appl. Sci. 4(1), 55–58 (2017)CrossRefGoogle Scholar
  12. 12.
    Ismael, H.F., Arifin, N.M.: Flow and heat transfer in a maxwell liquid sheet over a stretching surface with thermal radiation and viscous dissipation. JP J. Heat Mass Transf. 15(4) (2018).  https://doi.org/10.17654/HM015040847CrossRefGoogle Scholar
  13. 13.
    Zeeshan, A., Ismael, H.F., Yousif, M.A., Mahmood, T., Rahman, S.U.: Simultaneous effects of slip and wall stretching/shrinking on radiative flow of magneto nanofluid through porous medium. J. Magn. 23(4), 491–498 (2018).  https://doi.org/10.4283/JMAG.2018.23.4.491CrossRefGoogle Scholar
  14. 14.
    Baskonus, H.M., Sulaiman, T.A., Bulut, H.: On the novel wave behaviors to the coupled nonlinear Maccari’s system with complex structure. Optik (Stuttg) (2017).  https://doi.org/10.1016/j.ijleo.2016.10.135CrossRefGoogle Scholar
  15. 15.
    Bulut, H., Sulaiman, T.A., Baskonus, H.M.: New solitary and optical wave structures to the Korteweg-de Vries equation with dual-power law nonlinearity. Opt. Quantum Electron. (2016).  https://doi.org/10.1007/s11082-016-0831-4CrossRefGoogle Scholar
  16. 16.
    Vakhnenko, V.O., Parkes, E.J., Morrison, A.J.: A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation, Chaos. Solitons Fractals (2003).  https://doi.org/10.1016/S0960-0779(02)00483-6zbMATHCrossRefGoogle Scholar
  17. 17.
    Baskonus, H.M., Bulut, H.: An effective schema for solving some nonlinear partial differential equation arising in nonlinear physics. Open Phys. (2015).  https://doi.org/10.1515/phys-2015-0035zbMATHCrossRefGoogle Scholar
  18. 18.
    Baskonus, H.M., Bulut, H.: Exponential prototype structures for (2+1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics. Waves Random Complex Media (2016).  https://doi.org/10.1080/17455030.2015.1132860MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Wei, G., Ismael, H.F., Bulut, H., Baskonus, H.M.: Instability modulation for the (2+1)-dimension paraxial wave equation and its new optical soliton solutions in Kerr media. Phys. Scr. (2019).  https://doi.org/10.1088/1402-4896/ab4a50
  20. 20.
    Ilhan, O.A., Bulut, H., Sulaiman, T.A., Baskonus, H.M.: Dynamic of solitary wave solutions in some nonlinear pseudoparabolic models and Dodd-Bullough-Mikhailov equation. Indian J. Phys. (2018).  https://doi.org/10.1007/s12648-018-1187-3CrossRefGoogle Scholar
  21. 21.
    Cattani, C., Sulaiman, T.A., Baskonus, H.M., Bulut, H.: Solitons in an inhomogeneous Murnaghan’s rod. Eur. Phys. J. Plus (2018).  https://doi.org/10.1140/epjp/i2018-12085-y
  22. 22.
    Houwe, A., Hammouch, Z., Bienvenue, D., Nestor, S. and Betchewe, G.: Nonlinear Schrödingers equations with cubic nonlinearity: M-derivative soliton solutions by \(\exp (-\Phi (\xi )) \)-expansion method (2019)Google Scholar
  23. 23.
    Manafian, J., Aghdaei, M.F.: Abundant soliton solutions for the coupled Schrödinger-Boussinesq system via an analytical method. Eur. Phys. J. Plus (2016).  https://doi.org/10.1140/epjp/i2016-16097-3CrossRefGoogle Scholar
  24. 24.
    Hammouch, Z., Mekkaoui, T., Agarwal, P.: Optical solitons for the Calogero-Bogoyavlenskii-Schiff equation in (2 + 1) dimensions with time-fractional conformable derivative. Eur. Phys. J. Plus (2018).  https://doi.org/10.1140/epjp/i2018-12096-8CrossRefGoogle Scholar
  25. 25.
    Cattani, C., Sulaiman, T.A., Baskonus, H.M., Bulut, H.: On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel’d-Sokolov systems. Opt. Quantum Electron. (2018).  https://doi.org/10.1007/s11082-018-1406-3
  26. 26.
    Bulut, H., Sulaiman, T.A., Baskonus, H.M.: Dark, bright optical and other solitons with conformable space-time fractional second-order spatiotemporal dispersion. Optik (Stuttg). (2018).  https://doi.org/10.1016/j.ijleo.2018.02.086CrossRefGoogle Scholar
  27. 27.
    Osman, M.S., Ghanbari, B.: New optical solitary wave solutions of Fokas-Lenells equation in presence of perturbation terms by a novel approach. Optik (Stuttg). (2018).  https://doi.org/10.1016/j.ijleo.2018.08.007CrossRefGoogle Scholar
  28. 28.
    Ghanbari, B., Kuo, C.-K.: New exact wave solutions of the variable-coefficient (1+ 1)-dimensional Benjamin-Bona-Mahony and (2+ 1)-dimensional asymmetric Nizhnik-Novikov-Veselov equations via the generalized exponential rational function method. Eur. Phys. J. Plus 134(7), 334 (2019)CrossRefGoogle Scholar
  29. 29.
    Chen, Y., Li, B., Zhang, H.: New exact travelling wave solutions for the shallow long wave approximate equations. Appl. Math. Comput. 160(1), 77–88 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Benkhaldoun, F., Elmahi, I., Seaïd, M.: A new finite volume method for flux-gradient and source-term balancing in shallow water equations. Comput. Methods Appl. Mech. Eng. 199(49–52), 3324–3335 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Imani, A.A., Ganji, D.D., Rokni, H.B., Latifizadeh, H., Hesameddini, E., Rafiee, M.H.: Approximate traveling wave solution for shallow water wave equation. Appl. Math. Model. 36(4), 1550–1557 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Rafei, M., Daniali, H.: Application of the variational iteration method to the Whitham-Broer-Kaup equations. Comput. Math. Appl. 54(7–8), 1079–1085 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Kröger, T., Lukáčová-Medvid’ová, M.: An evolution Galerkin scheme for the shallow water magnetohydrodynamic equations in two space dimensions. J. Comput. Phys. 206(1), 122–149 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Kesserwani, G., Ghostine, R., Vazquez, J., Ghenaim, A., Mosé, R.: Application of a second-order Runge-Kutta discontinuous Galerkin scheme for the shallow water equations with source terms. Int. J. Numer. Methods Fluids 56(7), 805–821 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Shang, Y.: Böcklund transformation, Lax pairs and explicit exact solutions for the shallow water waves equation. Appl. Math. Comput. 187(2), 1286–1297 (2007)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Wazwaz, A.-M.: Solitary wave solutions of the generalized shallow water wave (GSWW) equation by Hirota’s method, tanh-coth method and Exp-function method. Appl. Math. Comput. 202(1), 275–286 (2008)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Kumar, M., Tiwari, A.K., Kumar, R.: More of coupled solutions Whitham–Broer–Kaup equations. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 89(4), 747–755 (2019) CrossRefGoogle Scholar
  38. 38.
    Xie, F., Yan, Z., Zhang, H.: Explicit and exact traveling wave solutions of Whitham-Broer-Kaup shallow water equations. Phys. Lett. A 285(1–2), 76–80 (2001)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hezha H. Abdulkareem
    • 1
    • 2
    Email author
  • Hajar F. Ismael
    • 1
    • 2
  • Etibar Sadi Panakhov
    • 2
    • 3
  • Hasan Bulut
    • 2
  1. 1.Department of MathematicsUniversity of ZakhoZakhoIraq
  2. 2.Department of MathematicsUniversity of FiratElazigTurkey
  3. 3.Institute of Applied MathematicsBakun State UniversityBakuAzerbaijan

Personalised recommendations