Constructive Quantum Interference in a Heterometallated Porphyrin Nanoring

  • Jonathan CremersEmail author
Part of the Springer Theses book series (Springer Theses)


The exchange interaction (J) between two spin centres is a convenient measure of through bond electronic communication. This chapter will describe the investigation of quantum interference phenomena in a bis-copper six-porphyrin nanoring (c-P6Cu2·T6) by using electron paramagnetic resonance spectroscopy via measurement of the exchange coupling between the copper centres. Using an analytical expression accounting for both dipolar and exchange coupling to simulate the time traces obtained in a double electron-electron resonance experiment, we demonstrate that J can be quantified to high precision even in the presence of significant through-space coupling (D). We show that the exchange coupling between two spin centres is increased by a factor of 4.5 in the ring structure with two parallel coupling pathways as compared to an otherwise identical system with just one coupling path. This observation is a signature of constructive quantum interference.


  1. 1.
    Balabin IA, Onuchic JN (2000) Dynamically controlled protein tunneling paths in photosynthetic reaction centers. Science 290:114CrossRefGoogle Scholar
  2. 2.
    Beratan DN, Skourtis SS, Balabin IA, Balaeff A, Keinan S, Venkatramani R, Xiao D (2009) Steering electrons on moving pathways. Acc Chem Res 42:1669CrossRefGoogle Scholar
  3. 3.
    de la Lande A, Babcock NS, Rezac J, Levy B, Sanders BC, Salahub DR (2012) Quantum effects in biological electron transfer. PCCP 14:5902CrossRefGoogle Scholar
  4. 4.
    Richert S, Kuprov I, Peeks MD, Suturina EA, Cremers J, Anderson HL, Timmel CR (2017) Quantifying the exchange coupling in linear copper porphyrin oligomers. PCCP 19:16057CrossRefGoogle Scholar
  5. 5.
    Hansen T, Solomon GC (2016) When conductance is less than the sum of its parts: exploring interference in multiconnected molecules. J Phys Chem C 120:6295CrossRefGoogle Scholar
  6. 6.
    Goldsmith RH, Wasielewski MR, Ratner MA (2006) Electron transfer in multiply bridged donor−acceptor molecules: dephasing and quantum coherence. J Phys Chem B 110:20258CrossRefGoogle Scholar
  7. 7.
    Kocherzhenko AA, Grozema FC, Siebbeles LDA (2011) Single molecule charge transport: from a quantum mechanical to a classical description. PCCP 13:2096CrossRefGoogle Scholar
  8. 8.
    Magoga M, Joachim C (1999) Conductance of molecular wires connected or bonded in parallel. Phys Rev B 59:16011CrossRefGoogle Scholar
  9. 9.
    Vazquez H, Skouta R, Schneebeli S, Kamenetska M, Breslow R, Venkataraman L, Hybertsen MS (2012) Probing the conductance superposition law in single-molecule circuits with parallel paths. Nat Nanotechnol 7:663CrossRefGoogle Scholar
  10. 10.
    Li Z, Smeu M, Rives A, Maraval V, Chauvin R, Ratner MA, Borguet E (2015) Towards graphyne molecular electronics. Nat Commun 6:6321CrossRefGoogle Scholar
  11. 11.
    Xiang D, Wang X, Jia C, Lee T, Guo X (2016) Molecular-scale electronics: from concept to function. Chem Rev 116:4318CrossRefGoogle Scholar
  12. 12.
    Marqués-González S, Low PJ (2016) Molecular electronics: history and fundamentals. Aust J Chem 69:244CrossRefGoogle Scholar
  13. 13.
    Aradhya SV, Venkataraman L (2013) Single-molecule junctions beyond electronic transport. Nat Nanotechnol 8:399CrossRefGoogle Scholar
  14. 14.
    Hogben HJ, Sprafke JK, Hoffmann M, Pawlicki M, Anderson HL (2011) Stepwise effective molarities in porphyrin oligomer complexes: preorganization results in exceptionally strong chelate cooperativity. J Am Chem Soc 133:20962CrossRefGoogle Scholar
  15. 15.
    Favereau L, Cnossen A, Kelber JB, Gong JQ, Oetterli RM, Cremers J, Herz LM, Anderson HL (2015) Six-coordinate zinc porphyrins for template-directed synthesis of spiro-fused nanorings. J Am Chem Soc 137:14256CrossRefGoogle Scholar
  16. 16.
    Godziela GM, Goff HM (1986) Solution characterization of copper(II) and silver(II) porphyrins and the one-electron oxidation products by nuclear magnetic resonance spectroscopy. J Am Chem Soc 108:2237CrossRefGoogle Scholar
  17. 17.
    Renner MW, Barkigia KM, Zhang Y, Medforth CJ, Smith KM, Fajer J (1994) Consequences of oxidation in nonplanar porphyrins: molecular structure and diamagnetism of the π cation radical of copper(II) octaethyltetraphenylporphyrin. J Am Chem Soc 116:8582CrossRefGoogle Scholar
  18. 18.
    Schwarzhans KE (1970) NMR spectroscopy of paramagnetic complexes. Angew Chem Int Ed 9:946CrossRefGoogle Scholar
  19. 19.
    Claridge TDW (2009) High-resolution NMR techniques in organic chemistry, 2nd edn. Elsevier Science, OxfordGoogle Scholar
  20. 20.
    Koehler J, Meiler J (2011) Expanding the utility of NMR restraints with paramagnetic compounds: background and practical aspects. Prog Nucl Magn Reson Spectrosc 59:360CrossRefGoogle Scholar
  21. 21.
    Bertini I, Luchinat C, Parigi G (2002) Magnetic susceptibility in paramagnetic NMR. Prog Nucl Magn Reson Spectrosc 40:249CrossRefGoogle Scholar
  22. 22.
    Bertini I, Luchinat C, Parigi G, Pierattelli R (2005) NMR spectroscopy of paramagnetic metalloproteins. ChemBioChem 6:1536CrossRefGoogle Scholar
  23. 23.
    Taylor PN, Huuskonen J, Aplin RT, Anderson HL, Rumbles G, Williams E (1998) Conjugated porphyrin oligomers from monomer to hexamer. Chem Commun 909Google Scholar
  24. 24.
    Busch DH (1992) Structural definition of chemical templates and the prediction of new and unusual materials. J Inclusion Phenom Mol Recognit Chem 12:389CrossRefGoogle Scholar
  25. 25.
    Pardo E, Faus J, Julve M, Lloret F, Muñoz MC, Cano J, Ottenwaelder X, Journaux Y, Carrasco R, Blay G, Fernández I, Ruiz-García R (2003) Long-range magnetic coupling through extended π-conjugated aromatic bridges in dinuclear copper(II) metallacyclophanes. J Am Chem Soc 125:10770CrossRefGoogle Scholar
  26. 26.
    Castellano M, Ruiz-García R, Cano J, Ferrando-Soria J, Pardo E, Fortea-Pérez FR, Stiriba S-E, Julve M, Lloret F (2015) Dicopper(II) metallacyclophanes as multifunctional magnetic devices: a joint experimental and computational study. Acc Chem Res 48:510CrossRefGoogle Scholar
  27. 27.
    Jeschke G, Polyhach Y (2007) Distance measurements on spin-labelled biomacromolecules by pulsed electron paramagnetic resonance. PCCP 9:1895Google Scholar
  28. 28.
    Jeschke G (2002) Determination of the nanostructure of polymer materials by electron paramagnetic resonance spectroscopy. Macromol Rapid Commun 23:227CrossRefGoogle Scholar
  29. 29.
    Jeschke G (2012) DEER distance measurements on proteins. Annu Rev Phys Chem 63:419CrossRefGoogle Scholar
  30. 30.
    Richert S, Cremers J, Kuprov I, Peeks MD, Anderson HL, Timmel CR (2017) Constructive quantum interference in a bis-copper six-porphyrin nanoring. Nat Commun 8:14842CrossRefGoogle Scholar
  31. 31.
    Sprafke JK, Kondratuk DV, Wykes M, Thompson AL, Hoffmann M, Drevinskas R, Chen W-H, Yong CK, Kärnbratt J, Bullock JE, Malfois M, Wasielewski MR, Albinsson B, Herz LM, Zigmantas D, Beljonne D, Anderson HL (2011) Belt-shaped π-systems: relating geometry to electronic structure in a six-porphyrin nanoring. J Am Chem Soc 133:17262CrossRefGoogle Scholar
  32. 32.
    Cremers J, Richert S, Kondratuk DV, Claridge TDW, Timmel CR, Anderson HL (2016) Nanorings with copper(II) and zinc(II) centers: forcing copper porphyrins to bind axial ligands in heterometallated oligomers. Chem Sci 7:6961CrossRefGoogle Scholar
  33. 33.
    Wautelet P, Bieber A, Turek P, Moigne JL, André J-J (1997) Magnetic properties of iminonitroxide and nitronylnitroxide based diradicals. Mol Cryst Liq Cryst Sci Technol Sect A 305:55CrossRefGoogle Scholar
  34. 34.
    Nishizawa S, Hasegawa J-Y, Matsuda K (2013) Theoretical investigation of the β value of the π-conjugated molecular wires by evaluating exchange interaction between organic radicals. J Phys Chem C 117:26280CrossRefGoogle Scholar
  35. 35.
    Herrmann C, Elmisz J (2013) Electronic communication through molecular bridges. Chem Commun 49:10456CrossRefGoogle Scholar
  36. 36.
    Grozema FC, Houarner-Rassin C, Prins P, Siebbeles LDA, Anderson HL (2007) Supramolecular control of charge transport in molecular wires. J Am Chem Soc 129:13370CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of OxfordOxfordUK

Personalised recommendations