A Grossone-Based Numerical Model for Computations with Infinity: A Case Study in an Italian High School

  • Francesco IngarozzaEmail author
  • Maria Teresa Adamo
  • Maria Martino
  • Aldo Piscitelli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11973)


The knowledge and understanding of abstract concepts systematically occur in the studies of mathematics. The epistemological approach of these concepts gradually becomes of higher importance as the level of abstraction and the risk of developing a “primitive concept” which is different from the knowledge of the topic itself increase. A typical case relates to the concepts of infinity and infinitesimal. The basic idea is to overturn the normal “concept-model” approach: no longer a concept which has to be studied and modeled in a further moment but rather a model that can be manipulated (from the calculation point of view) and that has to be associated to a concept that is compatible with the calculus properties of the selected model. In this paper the authors want to prove the usefulness of this new approach in the study of infinite quantities and of the infinitesimal calculus. To do this, they expose results of an experiment being a test proposed to students of a high school. The aim of the test is to demonstrate that this new solution could be useful in order to enforce ideas and acknowledgment about infinitesimal calculus. In order to do that, the authors propose a test to their students a first time without giving any theoretical information but only using an arithmetic/algebraic model. In a second moment, after some lectures, the students repeat the test showing that new better results come out. The reason is that after lessons, students could join new basic ideas or primitive concepts to their calculus abilities. By such doing they do not use a traditional “concept–model” but a new “model–concept” solution.


Mathematics education Teaching/learning methods and strategies Grossone Computer tools 



The authors thank Fabio Caldarola, University of Calabria, for the supervision of the project and the Headmistress of Liceo Scientifico “Filolao”, Antonella Romeo, for the economic support. The authors thank the anonymous reviewers for their useful comments that have improved the presentation. Special thanks go to Irene Dattolo for her valuable support provided for the translation of the text.


  1. 1.
    Antoniotti, L., Caldarola, F., d’Atri, G., Pellegrini, M.: New approaches to basic calculus: an experimentation via numerical computation. In: Sergeyev, Ya.D., Kvasov, D.E. (eds.) NUMTA 2019. LNCS, vol. 11973, pp. 329–342. Springer, Heidelberg (2019)Google Scholar
  2. 2.
    Antoniotti, L., Caldarola, F., Maiolo, M.: Infinite numerical computing applied to Hilbert’s, Peano’s, and Moore’s curves. Mediterranean J. Math. (to appear)Google Scholar
  3. 3.
    Asubel, D.: Educazione e processi cognitivi. Franco Angeli (1978)Google Scholar
  4. 4.
    Bertacchini, F., Bilotta, E., Caldarola, F., Pantano, P.: The role of computer simulations in learning analytic mechanics towards chaos theory: a course experimentation. Int. J. Math. Educ. Sci. Technol. 50(1), 100–120 (2019)CrossRefGoogle Scholar
  5. 5.
    Bonaiuti, G., Calvani, A., Ranieri, M.: Fondamenti di didattica. Teoria e prassi dei dispositivi formativi. Carrocci, Roma (2007)Google Scholar
  6. 6.
    Caldarola, F.: The exact measures of the Sierpiński \(d\)-dimensional tetrahedron in connection with a Diophantine nonlinear system. Commun. Nonlinear Sci. Numer. Simul. 63, 228–238 (2018). Scholar
  7. 7.
    Caldarola, F.: The Sierpiński curve viewed by numerical computations with infinities and infinitesimals. Appl. Math. Comput. 318, 321–328 (2018). Scholar
  8. 8.
    Caldarola, F., Cortese, D., d’Atri, G., Maiolo, M.: Paradoxes of the infinite and ontological dilemmas between ancient philosophy and modern mathematical solutions. In: Sergeyev, Y.D., Kvasov, D.E. (eds.) NUMTA 2019. LNCS, vol. 11973, pp. 358–372. Springer, Heidelberg (2019)Google Scholar
  9. 9.
    Caldarola, F., Maiolo, M., Solferino, V.: A new approach to the Z-transform through infinite computation. Commun. Nonlinear Sci. Numer. Simul. 82, 105019 (2020). Scholar
  10. 10.
    Cococcioni, M., Pappalardo, M., Sergeyev, Y.D.: Lexicographic multi-objective linear programming using grossone methodology: theory and algorithm. Appl. Math. Comput. 318, 298–311 (2018)zbMATHGoogle Scholar
  11. 11.
    De Cosmis, S., De Leone, R.: The use of grossone in mathematical programming and operations research. Appl. Math. Comput. 218(16), 8029–8038 (2012)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Ely, R.: Nonstandard student conceptions about infinitesimals. J. Res. Math. Educ. 41(2), 117–146 (2010)Google Scholar
  13. 13.
    Faggiano, E.: “Integrare" le tecnologie nella didattica della Matematica: un compito complesso. Bricks 2(4), 98–102 (2012)Google Scholar
  14. 14.
    Gastaldi, M.: Didattica generale. Mondadori, Milano (2010)Google Scholar
  15. 15.
    Gennari, M.: Didattica generale. Bompiani, Milano (2006)Google Scholar
  16. 16.
    Iannone P., Rizza D., Thoma A.: Investigating secondary school students’ epistemologies through a class activity concerning infinity. In: Bergqvist E., et al. (eds.) Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education, Umeå, Sweden, vol. 3, pp. 131–138. PME (2018)Google Scholar
  17. 17.
    La Neve, C.: Manuale di didattica. Il sapere sull’insegnamento. La Scuola, Brescia (2011)Google Scholar
  18. 18.
    Palumbo, C., Zich, R.: Matematica ed informatica: costruire le basi di una nuova didattica 2(4), 10–19 (2012)Google Scholar
  19. 19.
    Rizza, D.: Primi Passi nell’Aritmetica dell’Infinito. Un nuovo modo di contare e misurare (2019, Preprint)Google Scholar
  20. 20.
    Rizza, D.: A study of mathematical determination through Bertrand’s Paradox. Philosophia Mathematica 26(3), 375–395 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Scimone, A., Spagnolo, F.: Il caso emblematico dell’inverso del teorema di Pitagora nella storia della trasposizione didattica attraverso i manuali. La matematica e la sua didattica 2, 217–227 (2005)Google Scholar
  22. 22.
    Sergeyev, Y.D.: A new applied approach for executing computations with infinite and infinitesimal quantities. Informatica 19, 567–596 (2008)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Sergeyev, Y.D.: Arithmetic of infinity. 2nd electronic ed. 2013. Edizioni Orizzonti Meridionali, Cosenza (2003)Google Scholar
  24. 24.
    Sergeyev, Y.D.: Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains. Nonlinear Anal. Ser. A: Theory Methods Appl. 1(12), 1688–1707 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sergeyev, Y.D.: Un semplice modo per trattare le grandezze infinite ed infinitesime. Matematica, Società Cultura: Rivista dell’Unione Matematica Italiana 8(1), 111–147 (2015)Google Scholar
  26. 26.
    Sergeyev, Y.D.: Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems. EMS Surv. Math. Sci. 4(2), 219–320 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sergeyev, Y.D., Mukhametzhanov, M.S., Mazzia, F., Iavernaro, F., Amodio, P.: Numerical methods for solving initial value problems on the infinity computer. Int. J. Unconv. Comput. 12, 3–23 (2016)Google Scholar
  28. 28.
    Tall, D.: A child thinking about infinity. J. Math. Behav. 20, 7–19 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Francesco Ingarozza
    • 1
    Email author
  • Maria Teresa Adamo
    • 1
  • Maria Martino
    • 1
  • Aldo Piscitelli
    • 1
  1. 1.Liceo Scientifico Statale “Filolao”CrotoneItaly

Personalised recommendations