Algorithms for Jewelry Industry 4.0

  • Francesco DemarcoEmail author
  • Francesca Bertacchini
  • Carmelo Scuro
  • Eleonora Bilotta
  • Pietro Pantano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11973)


The industrial and technological revolution and the use of innovative software allowed to build a virtual world from which we can control the physical one. In particular, this development provided relevant benefits in the field of jewelry manufacturing industry using parametric modeling systems. This paper proposes a parametric design method to improve smart manufacturing in 4.0 jewelry industry. By using constrained collection of schemata, the so called Direct Acyclic Graphs (DAGs) and additive manufacturing technologies, we created a process by which customers are able to modify 3D virtual models and to visualize them, according to their preferences. In fact, by using the software packages Mathematica and Grasshopper, we exploited both the huge quantity of mathematical patterns (such as curves and knots), and the parametric space of these structures. A generic DAG, grouped into a unit called User Object, is a design tools shifting the focus from final shape to digital process. For this reason, it is capable to returns a huge number of unique combinations of the starting configurations, according to the customers preferences. The configurations chosen by the designer or by the customers, are 3D printed in wax-based resins and, later, ready to be merged, according to artisan jewelry handcraft. Two cases studio are proposed to show empirical evidences of the designed process to transform abstract mathematical equations into real physical forms.


Parametric jewelry Algorithm for jewelry Smart manufacturing 


  1. 1.
    Aish, R., Woodbury, R.: Multi-level interaction in parametric design. In: Butz, A., Fisher, B., Krüger, A., Olivier, P. (eds.) SG 2005. LNCS, vol. 3638, pp. 151–162. Springer, Heidelberg (2005). Scholar
  2. 2.
    Kielarova, S.W., et al.: An approach of generative design system: jewelry design application. In: 2013 IEEE International Conference on Industrial Engineering and Engineering Management, Piscataway, New Jersey, USA, pp. 1329–1333 (2013)Google Scholar
  3. 3.
    Harding, J.E., Shepherd, P.: Meta-parametric design. Des. Stud. 52, 73–95 (2017)CrossRefGoogle Scholar
  4. 4.
    Oxman, R.: Theory and design in the first digital age. Des. Stud. 27, 229–265 (2006)CrossRefGoogle Scholar
  5. 5.
    Oxman, R.: Thinking difference: theories and models of parametric design thinking. Des. Stud. 52, 4–39 (2017)CrossRefGoogle Scholar
  6. 6.
    Woodbury, R.G., Peters, B., Sheikholesami, M.: Element of Parametric Design, 1st edn. Taylor & Francis, Abingdon (2010)Google Scholar
  7. 7.
    Oxman, R.: Parametric design thinking. Des. Stud. 52, 1–3 (2017)CrossRefGoogle Scholar
  8. 8.
    Singh, V., Gu, N.: Towards an integrated generative design framework. Des. Stud. 33(2), 185–207 (2012)CrossRefGoogle Scholar
  9. 9.
    Bentley, P., Kumar, S.: Three ways to grow designs: a comparison of embryogenies for an evolutionary design problem. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation, pp. 35–43. Morgan Kaufmann Publishers (1999)Google Scholar
  10. 10.
    Bilotta, E., Pantano, P., Stranges, F.: Computer graphics meets chaos and hyperchaos: some key problems. Comput. Graph. 30(3), 359–367 (2006)CrossRefGoogle Scholar
  11. 11.
    Gabriele, L., Tavernise, A., Bertacchini, F.: Active learning in a robotics laboratory with university students. In: Increasing Student Engagement and Retention Using Immersive Interfaces: Virtual Worlds, Gaming, and Simulation, pp. 315–339. Emerald Group Publishing Limited (2012)Google Scholar
  12. 12.
    Adamo, A., Bertacchini, P.A., Bilotta, E., Pantano, P., Tavernise, A.: Connecting art and science for education: learning through an advanced virtual theater with “talking heads". Leonardo 43(5), 442–448 (2010)CrossRefGoogle Scholar
  13. 13.
    Bertacchini, F., Bilotta, E., Pantano, P.: Shopping with a robotic companion. Comput. Hum. Behav. 77, 382–395 (2017)CrossRefGoogle Scholar
  14. 14.
    Bertacchini, F., Bilotta, E., Caldarola, F., Pantano, P., Bustamante, L.R.: Emergence of linguistic-like structures in one-dimensional cellular automata. In: AIP Conference Proceedings, vol. 1776, p. 090044. AIP Publishing (2016)Google Scholar
  15. 15.
    Bertacchini, F., Bilotta, E., Carini, M., Gabriele, L., Pantano, P., Tavernise, A.: Learning in the smart city: a virtual and augmented museum devoted to Chaos theory. In: Chiu, D.K.W., Wang, M., Popescu, E., Li, Q., Lau, R. (eds.) ICWL 2012. LNCS, vol. 7697, pp. 261–270. Springer, Heidelberg (2014). Scholar
  16. 16.
    Bertacchini, F., Tavernise, A.: Knowledge sharing for cultural heritage 2.0: prosumers in a digital agora. Int. J. Virtual Communities Soc. Network. (IJVCSN) 6(2), 24–36 (2014)CrossRefGoogle Scholar
  17. 17.
    Bertacchini, F., Bilotta, E., Gabriele, L., Pantano, P., Tavernise, A.: Toward the use of Chua’s circuit in education, art and interdisciplinary research: some implementation and opportunities. Leonardo 46(5), 456–463 (2013)CrossRefGoogle Scholar
  18. 18.
    Bilotta, E., Bossio, E., Pantano, P.: Chaos at School: Chua’s circuit for students in junior and senior High School. Int. J. Bifurcat. Chaos 20(1), 1–28 (2010)CrossRefGoogle Scholar
  19. 19.
    Bilotta, E., et al.: ImaginationTOOLS (TM)-A 3D environment for learning and playing music. In: Eurographics Italian Chapter Conference Proceedings, pp. 139–144, (2007)Google Scholar
  20. 20.
    Bilotta, E., Di Blasi, G., Stranges, F., Pantano, P.: A gallery of Chua attractors part VI. Int. J. Bifurcat. Chaos 17(6), 1801–1910 (2007)CrossRefGoogle Scholar
  21. 21.
    Bilotta, E., Stranges, F., Pantano, P.: A gallery of Chua attractors: part III. Int. J. Bifurcat. Chaos 17(3), 657–734 (2007)CrossRefGoogle Scholar
  22. 22.
    Bilotta, E., Di Blasi, G., Stranges, F., Pantano, P.: A gallery of Chua attractors: part IV. Int. J. Bifurcat. Chaos 17(4), 1017–1077 (2007)CrossRefGoogle Scholar
  23. 23.
    Bilotta, E., Pantano, P., Vena, S.: Artificial micro-worlds part I: a new approach for studying life-like phenomena. Int. J. Bifurcat. Chaos 21(2), 373–398 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Bilotta, E., Pantano, P.: Artificial micro-worlds part II: cellular automata growth dynamics. Int. J. Bifurcat. Chaos 21(3), 619–645 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Lombardo, M.C., Barresi, R., Bilotta, E., Gargano, F., Pantano, P., Sammartino, M.: Demyelination patterns in a mathematical model of multiple sclerosis. J. Math. Biol. 75(2), 373–417 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Abdechiri, M., Faez, K., Amindavar, H., Bilotta, E.: The chaotic dynamics of high-dimensional systems. Nonlinear Dyn. 87(4), 2597–2610 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Bertacchini, F., et al.: An emotional learning environment for subjects with Autism Spectrum Disorder. In: 2013 International Conference on Interactive Collaborative Learning (ICL), pp. 653–659. IEEE, September 2013Google Scholar
  28. 28.
    Vaca-Cárdenas, L.A., et al.: Coding with Scratch: the design of an educational setting for Elementary pre-service teachers. In: 2015 International Conference on Interactive Collaborative Learning (ICL), pp. 1171–1177. IEEE, September 2015Google Scholar
  29. 29.
    Bertacchini, F., Bilotta, E., Gabriele, L., Pantano, P., Servidio, R.: Using Lego MindStorms in higher education: cognitive strategies in programming a quadruped robot. In: Workshop Proceedings of the 18th International Conference on Computers in Education, ICCE, pp. 366–371 (2010)Google Scholar
  30. 30.
    Sansri, S., Kielarova, S.W.: Multi-objective shape optimization in generative design: art deco double clip brooch jewelry design. In: Kim, K.J., Kim, H., Baek, N. (eds.) ICITS 2017. LNEE, vol. 449, pp. 248–255. Springer, Singapore (2018). Scholar
  31. 31.
    Aish, R., Hanna, S.: Comparative evaluation of parametric design systems for teaching design computation. Des. Stud. 52, 144–172 (2017)CrossRefGoogle Scholar
  32. 32.
    Hudson, R., Shepherd, P., Hines, D.: Aviva Stadium: a case study in integrated parametric design. Int. J. Architect. Comput. 9(2), 187–203 (2011)CrossRefGoogle Scholar
  33. 33.
    Oxman, R., Gu, N.: Theories and models of parametric design thinking. In: Proceedings of the 33rd eCAADe Conference, pp. 477–482 (2015)Google Scholar
  34. 34.
    Ashton, K., et al.: That ‘internet of things’ thing. RFID J. 22(7), 97–114 (2009)Google Scholar
  35. 35.
    Sundmaeker, H., et al.: Vision and challenges for realising the Internet of Things. In: Cluster of European Research Projects on the Internet of Things, vol. 3, no. 3, pp. 34–36. European Commission (2010)Google Scholar
  36. 36.
    Prats, M., et al.: Transforming shape in design: observations from studies of sketching. Des. Stud. 20(5), 503–520 (2009)CrossRefGoogle Scholar
  37. 37.
    Derix, C.: Mediating spatial phenomena through computational heuristics. In: Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture, pp. 61–66 (2010)Google Scholar
  38. 38.
    Gero, J.S., Kumar, B.: Expanding design spaces through new design variables. Des. Stud. 14(2), 210–221 (1993)CrossRefGoogle Scholar
  39. 39.
    Harding, J., Joyce, S., Shepherd, P., Williams, C.: Thinking Topologically at Early Stage Parametric Design. na. (2012)Google Scholar
  40. 40.
    French, M.J., Gravdahl, J.T., French, M.J.: Conceptual Design for Engineers. Springer, Heidelberg (1985). Scholar
  41. 41.
    Cho, S.B.: Towards creative evolutionary systems with interactive genetic algorithm. Appl. Intell. 16(2), 129–138 (2002)CrossRefGoogle Scholar
  42. 42.
    Gibson, I., Rosen, D.W., Stucker, B.: Additive Manufacturing Technologies, 2nd edn. Springer, New York (2014). Scholar
  43. 43.
    Kruth, J.P., Leu, M.C., Nakagawa, T.: Progress in additive manufacturing and rapid prototyping. CIRP Ann. 47(2), 525–540 (1998)CrossRefGoogle Scholar
  44. 44.
    Huang, S.H., Liu, P., Mokasdar, A., Hou, L.: Additive manufacturing and its societal impact: a literature review. Int. J. Adv. Manuf. Technol. 47(2), 1191–1203 (2013)CrossRefGoogle Scholar
  45. 45.
    Lee, J., Bagheri, B., Kao, H.A.: A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015)CrossRefGoogle Scholar
  46. 46.
    Rüßmann, M., et al.: Industry 4.0: the future of productivity and growth in manufacturing industries. Boston Consult. Group 9(1), 54–89 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CalabriaRendeItaly
  2. 2.Department of Mechanical, Energy and Management EngineeringUniversity of CalabriaRendeItaly

Personalised recommendations