Advertisement

Modelling on Human Intelligence a Machine Learning System

  • Michela De PietroEmail author
  • Francesca Bertacchini
  • Pietro Pantano
  • Eleonora Bilotta
Conference paper
  • 30 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11973)

Abstract

Recently, a huge set of systems, devoted to emotions recognition has been built, especially due to its application in many work domains, with the aims to understand human behaviour and to embody this knowledge into human-computer interaction or human-robot interaction. The recognition of human expressions is a very complex problem for artificial systems, caused by the extreme elusiveness of the phenomenon that, starting from six basic emotions, creates a series of intermediate variations, difficult to recognize by an artificial system. To overcome these difficulties, and expand artificial knowledge, a Machine Learning (ML) system has been designed with the specific aim to develop a recognition system modelled on human cognitive functions. Cohn-Kanade database images was used as data set. After training the ML, it was tested on a representative sample of unstructured data. The aim is to make computational algorithms more and more efficient in recognizing emotional expressions in the faces of human subjects.

Keywords

Machine learning Artificial intelligence Emotion recognition 

References

  1. 1.
    Kulkarni, S.S., Reddy, N.P., Hariharan, S.I.: Facial expression (mood) recognition from facial images using committee neural networks. Biomed. Eng. Online 8(1), 16 (2009)CrossRefGoogle Scholar
  2. 2.
    Carroll, J.M., Russell, J.A.: Facial expressions in Hollywood’s protrayal of emotion. J. Pers. Soc. Psychol. 72(1), 164 (1997)CrossRefGoogle Scholar
  3. 3.
    Eibl-Eibesfeldt, I.: Human Ethology. Aldine de Gruvter, New York (1989)Google Scholar
  4. 4.
    Ekman, P., Friesen, W.V.: Facial Action Coding System: Investigator’s Guide. Consulting Psychologists Press, Palo Alto (1978)Google Scholar
  5. 5.
    Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression. In: Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, pp. 94–101. IEEE (2010)Google Scholar
  6. 6.
    Sebe, N., Lew, M.S., Sun, Y., Cohen, I., Gevers, T., Huang, T.S.: Authentic facial expression analysis. Image Vis. Comput. 25(12), 1856–1863 (2007)CrossRefGoogle Scholar
  7. 7.
    Kobayashi, H., Hara, F.: Facial interaction between animated 3D face robot and human beings. In: International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 4, pp. 3732–3737. IEEE, Orlando (1997)Google Scholar
  8. 8.
    Schachter, S., Singer, J.: Cognitive, social, and physiological determinants of emotional state. Psychol. Rev. 69(5), 379 (1962) CrossRefGoogle Scholar
  9. 9.
    Darwin, C.: On the Origin of Species. D. Appleton & Company, New York (1860)Google Scholar
  10. 10.
    James, W.: Essays in Psychology, vol. 13. Harvard University Press, Cambridge (1983)Google Scholar
  11. 11.
    Cannon, W.B.: The James-Lange theory of emotions: a critical examination and an alternative theory. Am. J. Psychol. 39(1/4), 106–124 (1927)CrossRefGoogle Scholar
  12. 12.
    Walker, D.L., Davis, M.: The role of amygdala glutamate receptors in fear learning, fear-potentiated startle, and extinction. Pharmacol. Biochem. Behav. 71(3), 379–392 (2002)CrossRefGoogle Scholar
  13. 13.
    Doré, B.P., Tompson, S.H., O’Donnell, M.B., An, L.C., Strecher, V., Falk, E.B.: Neural mechanisms of emotion regulation moderate the predictive value of affective and value-related brain responses to persuasive messages. J. Neurosci. 39(7), 1293–1300 (2019)CrossRefGoogle Scholar
  14. 14.
    LeDoux, J.E., Hofmann, S.G.: The subjective experience of emotion: a fearful view. Curr. Opin. Behav. Sci. 19, 67–72 (2018)CrossRefGoogle Scholar
  15. 15.
    Lazarus, R.S.: Thoughts on the relations between emotion and cognition. Am. Psychol. 37(9), 1019 (1982)CrossRefGoogle Scholar
  16. 16.
    Frijda, N.H.: Appraisal and beyond. Cogn. Emot. 7(3–4), 225–231 (1993)CrossRefGoogle Scholar
  17. 17.
    Bourgais, M., Taillandier, P., Vercouter, L., Adam, C.: Emotion modeling in social simulation: a survey. J. Artif. Soc. Soc. Simul. 21(2), 1–5 (2018)CrossRefGoogle Scholar
  18. 18.
    Wibowo, H., Firdausi, F., Suharso, W., Kusuma, W.A., Harmanto, D.: Facial expression recognition of 3D image using facial action coding system (FACS). Telkomnika 17(2), 628–636 (2019)CrossRefGoogle Scholar
  19. 19.
    Gabriele, L., Bertacchini, F., Tavernise, A., Vaca-Cárdenas, L., Pantano, P., Bilotta, E.: Lesson planning by computational thinking skills in Italian pre-service teachers. Inform. Educ. 18(1), 69–104 (2019)CrossRefGoogle Scholar
  20. 20.
    Gabriele, L., Tavernise, A., Bertacchini, F.: Active learning in a robotics laboratory with university students. In: Increasing Student Engagement and Retention Using Immersive Interfaces: Virtual Worlds, Gaming, and Simulation, pp. 315–339. Emerald Group Publishing Limited (2012)Google Scholar
  21. 21.
    Abdechiri, M., Faez, K., Amindavar, H., Bilotta, E.: The chaotic dynamics of high-dimensional systems. Nonlinear Dyn. 87(4), 2597–2610 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Freeman, W.J.: Emotion is from preparatory brain chaos; irrational action is from premature closure. Behav. Brain Sci. 28(2), 204–205 (2005)CrossRefGoogle Scholar
  23. 23.
    Bilotta, E., Bossio, E., Pantano, P.: Chaos at school: Chua’s circuit for students in junior and senior high school. Int. J. Bifurcat. Chaos 20(01), 1–28 (2010)CrossRefGoogle Scholar
  24. 24.
    Bilotta, E., Pantano, P., Vena, S.: Artificial micro-worlds part I: a new approach for studying life-like phenomena. Int. J. Bifurcat. Chaos 21(2), 373–398 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Bilotta, E., Pantano, P.: Artificial micro-worlds part II: cellular automata growth dynamics. Int. J. Bifurcat. Chaos 21(03), 619–645 (2011)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Bilotta, E., Stranges, F., Pantano, P.: A gallery of Chua attractors: part III. Int. J. Bifurcat. Chaos 17(3), 657–734 (2007)CrossRefGoogle Scholar
  27. 27.
    Lorincz, A., Jeni, L., Szabo, Z., Cohn, J., Kanade, T.: Emotional expression classification using time-series kernels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 889–895. IEEE (2013)Google Scholar
  28. 28.
    Bertacchini, F., et al.: An emotional learning environment for subjects with Autism Spectrum Disorder. In: International Conference on Interactive Collaborative Learning (ICL), pp. 653–659. IEEE (2013)Google Scholar
  29. 29.
    Cárdenas, L.A.V., et al.: An educational coding laboratory for elementary pre-service teachers: a qualitative approach. Int. J. Eng. Pedagogy (iJEP) 6(1), 11–17 (2016)CrossRefGoogle Scholar
  30. 30.
    Bertacchini, F., Bilotta, E., Gabriele, L., Pantano, P., Servidio, R.: Using Lego MindStorms in higher education: cognitive strategies in programming a quadruped robot. In: Workshop Proceedings of the 18th International Conference on Computers in Education, pp. 366–371 (2010)Google Scholar
  31. 31.
    Bertacchini, F., Tavernise, A.: Knowledge sharing for cultural heritage 2.0: prosumers in a digital agora. Int. J. Virtual Communities Soc. Netw. 6(2), 24–36 (2014) CrossRefGoogle Scholar
  32. 32.
    Bertacchini, F., Bilotta, E., Pantano, P.: Shopping with a robotic companion. Comput. Hum. Behav. 77, 382–395 (2017)CrossRefGoogle Scholar
  33. 33.
    Mane, S., Shah, G.: Facial recognition, expression recognition, and gender identification. In: Balas, V.E., Sharma, N., Chakrabarti, A. (eds.) Data Management, Analytics and Innovation. AISC, vol. 808, pp. 275–290. Springer, Singapore (2019).  https://doi.org/10.1007/978-981-13-1402-5_21CrossRefGoogle Scholar
  34. 34.
    Kanade, T., Cohn, J.F., Tian, Y.: Comprehensive database for facial expression analysis. In: Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 46–53. IEEE (2000)Google Scholar
  35. 35.
    Tian, Y.I., Kanade, T., Cohn, J.F.: Recognizing action units for facial expression analysis. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 97–115 (2001)CrossRefGoogle Scholar
  36. 36.
    Wolfram, S.: An Elementary Introduction to the Wolfram Language. Wolfram Media, Incorporated, Champaign (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of CalabriaArcavacata di RendeItaly

Personalised recommendations