Advertisement

Axial Fundamental Vibration Frequency of a Tapered Rod with a Linear Cross-Sectional Area Variation

  • Farid Chalah
  • Lila Chalah-Rezgui
  • Salah Eddine Djellab
  • Abderrahim Bali
Chapter
  • 56 Downloads
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 124)

Abstract

The axial vibration frequency of a tapered rod is investigated. The method of Rayleigh is used for this purpose. The taper type is relative to the linear variation of the cross section. The objective of the present investigation is to express the fundamental axial angular vibration frequency ω1 by a closed-form equation that takes account of the taper degree. For this purpose, the first mode shape function of the axial vibration of a uniform rod is adopted in the present investigation for a simplification aim. The necessary validation is made relatively to uniform and conical rods given in the scientific literature. Two formulas, depending on which end (large or small base) is fixed, are proposed for the fundamental angular frequency vibration of the tapered rod with a linear cross-sectional area variation. They are expressed as a function of the taper degree, Young’s modulus E, material density ρ, and the rod length L.

Keywords

Tapered rod Axial vibration Uniform rod Rayleigh method FEM 

References

  1. 1.
    Bert, C.W.: Relationship between fundamental natural frequency and maximum static deflection for various linear vibratory systems. J. Sound Vib. 162, 547–557 (1993).  https://doi.org/10.1006/jsvi.1993.1139CrossRefzbMATHGoogle Scholar
  2. 2.
    Bert, C.W.: Application of a version of the Rayleigh technique to problems of bars, beams, columns, membranes, and plates. J. Sound Vib. 119, 317–326 (1987).  https://doi.org/10.1016/0022-460X(87)90457-3CrossRefGoogle Scholar
  3. 3.
    Bhat, R.B.: Obtaining natural frequencies of elastic systems by using an improved strain energy formulation in the Rayleigh-Ritz method. J. Sound Vib. 93, 314–320 (1984).  https://doi.org/10.1016/0022-460X(84)90316-XCrossRefGoogle Scholar
  4. 4.
    Chalah, F., Djellab, S.E., Chalah-Rezgui, L., Falek, K., Bali, A.: Tapered beam axial vibration frequency: linear cross-area variation case. APCBEE Procedia 9, 323–327 (2014).  https://doi.org/10.1016/j.apcbee.2014.01.057CrossRefGoogle Scholar
  5. 5.
    De Rosa, M.A., Franciosi, C.: The optimized Rayleigh method and mathematicain vibrations and buckling problems. J. Sound Vib. 191, 795–808 (1996).  https://doi.org/10.1006/jsvi.1996.0156CrossRefGoogle Scholar
  6. 6.
    Eisenberger, M.: Exact longitudinal vibration frequencies of a variable cross-section rod. Appl. Acoust. 34, 123–130 (1991).  https://doi.org/10.1016/0003-682X(91)90027-CCrossRefGoogle Scholar
  7. 7.
    Friedman, Z., Kosmatka, J.B.: Exact stiffness matrix of a nonuniform beam—I. Extension, torsion, and bending of a bernoulli-euler beam. Comput. Struct. 42, 671–682 (1992).  https://doi.org/10.1016/0045-7949(92)90179-4CrossRefzbMATHGoogle Scholar
  8. 8.
    Ma, H.: Exact solutions of axial vibration problems of elastic bars. Int. J. Numer. Meth. Eng. 75, 241–252 (2008).  https://doi.org/10.1002/nme.2254CrossRefzbMATHGoogle Scholar
  9. 9.
    Shangchow, C.: The fundamental frequency of an elastic system and an improved displacement function. J. Sound Vib. 81, 299–302 (1982).  https://doi.org/10.1016/0022-460X(82)90211-5CrossRefzbMATHGoogle Scholar
  10. 10.
    Zeng, H., Bert, C.W.: Vibration analysis of a tapered bar by differential transformation. J. Sound Vib. 242, 737–739 (2001).  https://doi.org/10.1006/jsvi.2000.3372CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Farid Chalah
    • 1
  • Lila Chalah-Rezgui
    • 1
  • Salah Eddine Djellab
    • 1
  • Abderrahim Bali
    • 2
  1. 1.Faculty of Civil EngineeringUsthbAlgiersAlgeria
  2. 2.Ecole Nationale PolytechniqueAlgiersAlgeria

Personalised recommendations