Advertisement

Testing for Network and Spatial Autocorrelation

  • Youjin LeeEmail author
  • Elizabeth L. Ogburn
Conference paper
  • 67 Downloads
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

Testing for dependence has been a well-established component of spatial statistical analyses for decades. In particular, several popular test statistics have desirable properties for testing for the presence of spatial autocorrelation in continuous variables. In this paper we propose two contributions to the literature on tests for autocorrelation. First, we propose a new test for autocorrelation in categorical variables. While some methods currently exist for assessing spatial autocorrelation in categorical variables, the most popular method is unwieldy, somewhat ad hoc, and fails to provide grounds for a single omnibus test. Second, we discuss the importance of testing for autocorrelation in data sampled from the nodes of a network, motivated by social network applications. We demonstrate that our proposed statistic for categorical variables can both be used in the spatial and network setting.

Keywords

Social networks Statistical dependence Spatial autocorrelation Peer effects 

Notes

Acknowledgements

Youjin Lee and Elizabeth Ogburn were supported by ONR grant N000141512343. The Framingham Heart Study is conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with Boston University (Contract No. N01-HC-25195 and HHSN268201500001I). This manuscript was not prepared in collaboration with investigators of the Framingham Heart Study and does not necessarily reflect the opinions or views of the Framingham Heart Study, Boston University, or NHLBI.

References

  1. 1.
    Anselin, L., Bera, A.K., Florax, R., Yoon, M.J.: Simple diagnostic tests for spatial dependence. Reg. Sci. Urban Econ. 26(1), 77–104 (1996)CrossRefGoogle Scholar
  2. 2.
    Castelli, W.: Cholesterol and lipids in the risk of coronary artery disease–the Framingham heart study. Can. J. Cardiol. 4, 5A–10A (1988)Google Scholar
  3. 3.
    Christakis, N.A., Fowler, J.H.: The spread of obesity in a large social network over 32 years. N. Engl. J. Med. 357(4), 370–379 (2007)CrossRefGoogle Scholar
  4. 4.
    Christakis, N.A., Fowler, J.H. The collective dynamics of smoking in a large social network. N. Engl. J. Med. 358(21), 2249–2258 (2008)CrossRefGoogle Scholar
  5. 5.
    Cliff, A.D., Ord, K.: Spatial autocorrelation: a review of existing and new measures with applications. Econ. Geogr. 46(suppl.1), 269–292 (1970)CrossRefGoogle Scholar
  6. 6.
    Cliff, A., Ord, K.: Testing for spatial autocorrelation among regression residuals. Geogr. Anal. 4(3), 267–284 (1972)CrossRefGoogle Scholar
  7. 7.
    D’Agostino, R.B., Vasan, R.S., Pencina, M.J., Wolf, P.A., Cobain, M., Massaro, J.M., Kannel, W.B.: General cardiovascular risk profile for use in primary care the Framingham heart study. Circulation 117(6), 743–753 (2008)CrossRefGoogle Scholar
  8. 8.
    Diniz-Filho, J.A.F., Bini, L.M., Hawkins, B.A.: Spatial autocorrelation and red herrings in geographical ecology. Glob. Ecol. Biogeogr. 12(1), 53–64 (2003)CrossRefGoogle Scholar
  9. 9.
    Farber, S., Páez, A., Volz, E.: Topology and dependency tests in spatial and network autoregressive models. Geogr. Anal. 41(2), 158–180 (2009)CrossRefGoogle Scholar
  10. 10.
    Farber, S., Marin, M.R., Páez, A.: Testing for spatial independence using similarity relations. Geogr. Anal. 47(2), 97–120 (2015)CrossRefGoogle Scholar
  11. 11.
    Fowler, J.H., Christakis, N.A.: Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham heart study. BMJ 337, a2338 (2008)CrossRefGoogle Scholar
  12. 12.
    Fujimoto, K., Chou, C.P., Valente, T.W.: The network autocorrelation model using two-mode data: affiliation exposure and potential bias in the autocorrelation parameter. Soc. Networks 33(3), 231–243 (2011)CrossRefGoogle Scholar
  13. 13.
    Geary, R.C.: The contiguity ratio and statistical mapping. Inc. Stat. 5(3), 115–146 (1954)Google Scholar
  14. 14.
    Griffith, D.A.: A linear regression solution to the spatial autocorrelation problem. J. Geogr. Syst. 2(2), 141–156 (2000)CrossRefGoogle Scholar
  15. 15.
    Kossinets, G., Watts, D.J.: Empirical analysis of an evolving social network. Science 311(5757), 88–90 (2006)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Lee, Y., Ogburn, E.L.: Network dependence and confounding by network structure lead to invalid inference. arXiv preprint ArXiv:1908.00520 (2019)Google Scholar
  17. 17.
    Legendre, P.: Spatial autocorrelation: trouble or new paradigm? Ecology 74(6), 1659–1673 (1993)CrossRefGoogle Scholar
  18. 18.
    Lennon, J.J.: Red-shifts and red herrings in geographical ecology. Ecography 23(1), 101–113 (2000)CrossRefGoogle Scholar
  19. 19.
    Lewis, K., Kaufman, J., Gonzalez, M., Wimmer, A., Christakis, N.: Tastes, ties, and time: a new social network dataset using facebook.com. Soc. Networks 30(4), 330–342 (2008)CrossRefGoogle Scholar
  20. 20.
    Lichstein, J.W., Simons, T.R., Shriner, S.A., Franzreb, K.E.: Spatial autocorrelation and autoregressive models in ecology. Ecol. Monogr. 72(3), 445–463 (2002)CrossRefGoogle Scholar
  21. 21.
    Long, J., Harre, N., Atkinson, Q.D.: Social clustering in high school transport choices. J. Environ. Psychol. 41, 155–165 (2015)CrossRefGoogle Scholar
  22. 22.
    Lyons, R.: The spread of evidence-poor medicine via flawed social-network analysis. Stat. Polit. Policy 2(1), 1–26 (2011)Google Scholar
  23. 23.
    Moran, P.A.: The interpretation of statistical maps. J. R. Stat. Soc. Ser. B Methodol. 10(2), 243–251 (1948)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Ogburn, E.L.: Challenges to estimating contagion effects from observational data. arXiv preprint ArXiv:1706.08440 (2017)Google Scholar
  25. 25.
    O’Neil, K.A., Redner, R.A.: Asymptotic distributions of weighted U-statistics of degree 2. Ann. Probab. 21, 1159–1169 (1993)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ord, J.K., Getis, A.: Local spatial autocorrelation statistics: distributional issues and an application. Geogr. Anal. 27(4), 286–306 (1995)CrossRefGoogle Scholar
  27. 27.
    Overmars, K.P., De Koning, G., Veldkamp, A.: Spatial autocorrelation in multi-scale land use models. Ecol. Model. 164(2), 257–270 (2003)CrossRefGoogle Scholar
  28. 28.
    Papadogeorgou, G., Choirat, C., Zigler, C.M.: Adjusting for unmeasured spatial confounding with distance adjusted propensity score matching. Biostatistics 20(2), 256–272 (2018)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Qiu, W.Q., Dean, M., Liu, T., George, L., Gann, M., Cohen, J., Bruce, M.L.: Physical and mental health of homebound older adults: an overlooked population. J. Am. Geriatr. Soc. 58(12), 2423–2428 (2010)CrossRefGoogle Scholar
  30. 30.
    Saczynski, J.S., Beiser, A., Seshadri, S., Auerbach, S., Wolf, P., Au, R.: Depressive symptoms and risk of dementia the Framingham heart study. Neurology 75(1), 35–41 (2010)CrossRefGoogle Scholar
  31. 31.
    Shapiro, C.P., Hubert, L., et al.: Asymptotic normality of permutation statistics derived from weighted sums of bivariate functions. Ann. Stat. 7(4), 788–794 (1979)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Sison, C.P., Glaz, J.: Simultaneous confidence intervals and sample size determination for multinomial proportions. J. Am. Stat. Assoc. 90(429), 366–369 (1995)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Smouse, P.E., Peakall, R.: Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82(5), 561–573 (1999)CrossRefGoogle Scholar
  34. 34.
    Vasan, R.S., Pencina, M.J., Cobain, M., Freiberg, M.S., D’Agostino, R.B.: Estimated risks for developing obesity in the Framingham heart study. Ann. Intern. Med. 143(7), 473–480 (2005)CrossRefGoogle Scholar
  35. 35.
    Weaver, I.S., Williams, H., Cioroianu, I., Williams, M., Coan, T., Banducci, S.: Dynamic social media affiliations among UK politicians. Soc. Networks 54, 132–144 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of PennsylvaniaPhiladelphiaUSA
  2. 2.Johns Hopkins Bloomberg School of Public HealthBaltimoreUSA

Personalised recommendations