Advertisement

Connected Graphs with a Given Degree Sequence: Efficient Sampling, Correlations, Community Detection and Robustness

  • John H. RingIV
  • Jean-Gabriel Young
  • Laurent Hébert-DufresneEmail author
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

Random graph models can help us assess the significance of the structural properties of real complex systems. Given the value of a graph property and its value in a randomized ensemble, we can determine whether the property is explained by chance by comparing its real value to its value in the ensemble. The conclusions drawn with this approach obviously depend on the choice of randomization. We argue that keeping graphs in one connected piece, or component, is key for many applications where complex graphs are assumed to be connected either by definition (e.g. the Internet) or by construction (e.g. a crawled subset of the World-Wide Web obtained only by following hyperlinks). Using an heuristic to quickly sample the ensemble of small connected simple graphs with a fixed degree sequence, we investigate the significance of the structural patterns found in real connected graphs. We find that, in sparse networks, the connectedness constraint changes degree correlations, the outcome of community detection with modularity, and the predictions of percolation on the ensemble.

Keywords

Random graphs Sampling Network analysis 

Notes

Acknowledgements

This work is supported by the James S. McDonnell Foundation (JGY) and Grant No. DMS-1622390 from the National Science Foundation (LHD). The authors contributed equally.

References

  1. 1.
    Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)CrossRefGoogle Scholar
  2. 2.
    Erdős, P., Rényi, A.: Publ. Math. 6, 290 (1959)Google Scholar
  3. 3.
    Gilbert, E.N.: Ann. Math. Stat. 30(4), 1141 (1959)CrossRefGoogle Scholar
  4. 4.
    Connor, E.F., Simberloff, D.: Ecology 60(6), 1132 (1979)CrossRefGoogle Scholar
  5. 5.
    Molloy, M., Reed, B.A., Random Struct. Algoritm. 6(2/3), 161 (1995).  https://doi.org/10.1002/rsa.3240060204 CrossRefGoogle Scholar
  6. 6.
    Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Phys. Rev. E 64, 026118 (2001).  https://doi.org/10.1103/PhysRevE.64.026118 ADSCrossRefGoogle Scholar
  7. 7.
    Coolen, T., Annibale, A., Roberts, E.: Generating Random Networks and Graphs. Oxford University Press, Oxford (2017)CrossRefGoogle Scholar
  8. 8.
    Frank, O., Strauss, D.: J. Am. Stat. Assoc. 81(395), 832 (1986)CrossRefGoogle Scholar
  9. 9.
    Olhede, S.C., Wolfe, P.J.: Proc. Natl. Acad. Sci. U. S. A. 111(41), 14722 (2014)Google Scholar
  10. 10.
    Vázquez, A., Moreno, Y.: Phys. Rev. E 67(1), 015101 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Hébert-Dufresne, L., Allard, A., Young, J.G., Dubé, L.J.: Phys. Rev. E 88(6), 062820 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Allard, A., Hébert-Dufresne, L.: Phys. Rev. X 9(1), 011023 (2019)Google Scholar
  13. 13.
    Orsini, C., Dankulov, M.M., Colomer-de Simón, P., Jamakovic, A., Mahadevan, P., Vahdat, A., Bassler, K.E., Toroczkai, Z., Boguná, M., Caldarelli, G., et al.: Nat. Commun. 6, 8627 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Tishby, I., Biham, O., Katzav, E., Kühn, R.: Phys. Rev. E 97(4), 042318 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    Tishby, I., Biham, O., Katzav, E., Kühn, R.: (2018). arXiv:1810.02198Google Scholar
  16. 16.
    Gray, C., Mitchell, L., Roughan, M.: J. Complex Netw. 7(6), 896–912 (2019).  https://doi.org/10.1093/comnet/cnz011 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Crane, H.: Probabilistic Foundations of Statistical Network Analysis. Chapman and Hall/CRC, Boca Raton (2018)CrossRefGoogle Scholar
  18. 18.
    Barabási, A.L., Albert, R.: Science 286(5439), 509 (1999)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Erickson, B.H.: Sociol. Methodol. 10, 276 (1979)CrossRefGoogle Scholar
  20. 20.
    Lee, S.H., Kim, P.J., Jeong, H.: Phys. Rev. E 73(1), 016102 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Fosdick, B.K., Larremore, D.B., Nishimura, J., Ugander, J.: SIAM Rev. 60(2), 315 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Viger, F., Latapy, M.: (2005). arXiv:cs/0502085Google Scholar
  23. 23.
    Viger, F., Latapy, M.: J. Complex Netw. 4(1), 15 (2015)CrossRefGoogle Scholar
  24. 24.
    Gkantsidist, C., Mihail, M., Zegura, E.: In: Proceedings of the Fifth Workshop on Algorithm Engineering and Experiments, vol. 111, p. 16. SIAM, Philadelphia (2003)Google Scholar
  25. 25.
    Havel, V.: Casopis Pest. Mat. 80, 477 (1955)Google Scholar
  26. 26.
    Hakimi, S.L.: J. Soc. Ind. Appl. Math. 10(3), 496 (1962). https://doi.org/10.1137/0110037 CrossRefGoogle Scholar
  27. 27.
    Seierstad, C., Opsahl, T.: Scand. J. Manag. 27(1), 44 (2011)CrossRefGoogle Scholar
  28. 28.
    Newman, M.E.J.: Phys. Rev. Lett. 89(20), 208701 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    Newman, M.E., Park, J.: Phys. Rev. E 68(3), 036122 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Hadfield, J., Megill, C., Bell, S.M., Huddleston, J., Potter, B., Callender, C., Sagulenko, P., Bedford, T., Neher, R.A.: Bioinformatics 34(23), 4121 (2018)CrossRefGoogle Scholar
  31. 31.
    Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: IEEE Trans. Power Syst. 26(1), 12 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Fortunato, S., Hric, D., Phys. Rep. 659, 1 (2016)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Young, J.G., St-Onge, G., Desrosiers, P., Dubé, L.J.: Phys. Rev. E 98(3), 032309 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    Hébert-Dufresne, L., Allard, A., Young, J.G., Dubé, L.J.: Sci. Rep. 3, 2171 (2013)CrossRefGoogle Scholar
  35. 35.
    Riolo, M.A., Newman, M.: (2019). arXiv:1908.09867Google Scholar
  36. 36.
    Newman, M.E.J., Girvan, M.: Phys. Rev. E 69(2), 026113 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    Newman, M.E.: Proc. Natl. Acad. Sci. U. S. A. 103(23), 8577 (2006)Google Scholar
  38. 38.
    Reichardt, J., Bornholdt, S.: Phys. Rev. E 74(1), 016110 (2006)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    White, S., Smyth, P.: In: Proceedings of the 2005 SIAM International Conference on Data Mining, pp. 274–285. SIAM, Philadelphia (2005)Google Scholar
  40. 40.
    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)CrossRefGoogle Scholar
  41. 41.
    Traag, V.A., Van Dooren, P., Nesterov, Y.: Phys. Rev. E 84(1), 016114 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    Peel, L., Larremore, D.B., Clauset, A.: Sci. Adv. 3(5), e1602548 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    Expert, P., Evans, T.S., Blondel, V.D., Lambiotte, R.: Proc. Natl. Acad. Sci. U. S. A. 108(19), 7663 (2011)Google Scholar
  44. 44.
    Peixoto, T.P.: Figshare (2014)Google Scholar
  45. 45.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: J. Mach. Learn. Res. 12, 2825 (2011)MathSciNetGoogle Scholar
  46. 46.
    Newman, M., Cantwell, G.T., Young, J.G.: (2019). arXiv:1907.12581Google Scholar
  47. 47.
    Newman, M.E.J.: Phys. Rev. E 66(1), 016128 (2002)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • John H. RingIV
    • 1
    • 2
  • Jean-Gabriel Young
    • 3
  • Laurent Hébert-Dufresne
    • 1
    • 2
    Email author
  1. 1.Vermont Complex Systems CenterUniversity of VermontBurlingtonUSA
  2. 2.Department of Computer ScienceUniversity of VermontBurlingtonUSA
  3. 3.Center for the Study of Complex SystemsUniversity of MichiganAnn ArborUSA

Personalised recommendations