Bounds for the Number of Tests in Non-adaptive Randomized Algorithms for Group Testing

  • Nader H. Bshouty
  • George Haddad
  • Catherine A. Haddad-ZaknoonEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12011)


We study the group testing problem with non-adaptive randomized algorithms. Several models have been discussed in the literature to determine how to randomly choose the tests. For a model \(\mathcal{M}\), let \(m_\mathcal{M}(n,d)\) be the minimum number of tests required to detect at most d defectives within n items, with success probability at least \(1-\delta \), for some constant \(\delta \). In this paper, we study the measures
$$c_\mathcal{M}(d)=\lim _{n\rightarrow \infty } \frac{m_\mathcal{M}(n,d)}{\ln n} \text{ and } \ c_\mathcal{M}=\lim _{d\rightarrow \infty } \frac{c_\mathcal{M}(d)}{d}.$$
In the literature, the analyses of such models only give upper bounds for \(c_\mathcal{M}(d)\) and \(c_\mathcal{M}\), and for some of them, the bounds are not tight. We give new analyses that yield tight bounds for \(c_\mathcal{M}(d)\) and \(c_\mathcal{M}\) for all the known models \(\mathcal{M}\).


Group testing Randomized algorithms Non-adaptive algorithms 


  1. 1.
    Rykov, V.V., D’yachkov, A.G.: Bounds on the length of disjunctive codes. Probl. Peredachi Inf. 18, 7–13 (1982)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1987)MathSciNetGoogle Scholar
  3. 3.
    Balding, D.J., Bruno, W.J., Torney, D.C., Knill, E.: A comparative survey of non-adaptive pooling designs. In: Speed, T., Waterman, M.S. (eds.) Genetic Mapping and DNA Sequencing. IMA, vol. 81, pp. 133–154. Springer, New York (1996). Scholar
  4. 4.
    Bruno, W.J., et al.: Efficient pooling designs for library screening. Genomics 26(1), 21–30 (1995)CrossRefGoogle Scholar
  5. 5.
    Bshouty, N.H., Diab, N., Kawar, S.R., Shahla, R.J.: Non-adaptive randomized algorithm for group testing. In International Conference on Algorithmic Learning Theory, ALT 2017, 15–17 October 2017, Kyoto University, Kyoto, Japan, pp. 109–128 (2017)Google Scholar
  6. 6.
    Cicalese, F.: Group testing. Fault-Tolerant Search Algorithms. MTCSAES, pp. 139–173. Springer, Heidelberg (2013). Scholar
  7. 7.
    Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: tracking most frequent items dynamically. ACM Trans. Database Syst. 30(1), 249–278 (2005)CrossRefGoogle Scholar
  8. 8.
    Damaschke, P., Muhammad, A.S.: Randomized group testing both query-optimal and minimal adaptive. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 214–225. Springer, Heidelberg (2012). Scholar
  9. 9.
    Dorfman, R.: The detection of defective members of large populations. Ann. Math. Stat. 14(4), 436–440 (1943)CrossRefGoogle Scholar
  10. 10.
    Du, D.-Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications. World Scientfic Publishing, Singapore (1993)CrossRefGoogle Scholar
  11. 11.
    Du, D.-Z., Hwang, F.K.: Pooling Designs and Nonadaptive Group Testing: Important Tools for DNA Sequencing. World Scientfic Publishing, Singapore (2006)CrossRefGoogle Scholar
  12. 12.
    Erdös, P., Rényi, A.: On two problems of information theory, pp. 241–254 (1963). Publications of the Mathematical Institute of the Hungarian Academy of SciencesGoogle Scholar
  13. 13.
    Füredi, Z.: On \(r\)-cover-free families. J. Comb. Theory Ser. A 73(1), 172–173 (1996)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hong, E.S., Ladner, R.E.: Group testing for image compression. IEEE Trans. Image Process. 11(8), 901–911 (2002)CrossRefGoogle Scholar
  15. 15.
    Hwang, F.K.: A method for detecting all defective members in a population by group testing. J. Am. Stat. Assoc. 67(339), 605–608 (1972)CrossRefGoogle Scholar
  16. 16.
    Hwang, F.K.: Random k-set pool designs with distinct columns. Probab. Eng. Inf. Sci. 14(1), 49–56 (2000)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hwang, F.K., Liu, Y.C.: The expected numbers of unresolved positive clones for various random pool designs. Probab. Eng. Inf. Sci. 15(1), 57–68 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hwang, F.K., Liu, Y.C.: A general approach to compute the probabilities of unresolved clones in random pooling designs. Probab. Eng. Inf. Sci. 18(2), 161–183 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hwang, F.K., Liu, Y.: Random pooling designs under various structures. J. Comb. Optim. 7, 339–352 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kautz, W., Singleton, R.: Nonrandom binary superimposed codes. IEEE Trans. Inf. Theory 10(4), 363–377 (1964)CrossRefGoogle Scholar
  21. 21.
    Macula, A.J., Popyack, L.J.: A group testing method for finding patterns in data. Discrete Appl. Math. 144(1), 149–157 (2004). Discrete Mathematics and Data MiningMathSciNetCrossRefGoogle Scholar
  22. 22.
    Porat, E., Rothschild, A.: Explicit nonadaptive combinatorial group testing schemes. IEEE Trans. Inf. Theory 57(12), 7982–7989 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ngo, H.Q., Du, D.-Z.: A survey on combinatorial group testing algorithms with applications to DNA library screening. Discrete Math. Theor. Comput. Sci. 55, 171–182 (2000). DIMACS SeriesMathSciNetCrossRefGoogle Scholar
  24. 24.
    Ruszinkó, M.: On the upper bound of the size of the r-cover-free families. J. Comb. Theory Ser. A 66(2), 302–310 (1994)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sebö, A.: On two random search problems. J. Stat. Plan. Inference 11(1), 23–31 (1985)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wolf, J.: Born again group testing: multiaccess communications. IEEE Trans. Inf. Theory 31(2), 185–191 (1985)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Nader H. Bshouty
    • 1
  • George Haddad
    • 2
  • Catherine A. Haddad-Zaknoon
    • 1
    Email author
  1. 1.TechnionHaifaIsrael
  2. 2.The Orthodox Arab College, Grade 11HaifaIsrael

Personalised recommendations