Advertisement

A Game of Cops and Robbers on Graphs with Periodic Edge-Connectivity

  • Thomas Erlebach
  • Jakob T. SpoonerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12011)

Abstract

This paper considers a game in which a single cop and a single robber take turns moving along the edges of a given graph G. If there exists a strategy for the cop which enables it to be positioned at the same vertex as the robber eventually, then G is called cop-win, and robber-win otherwise. In contrast to previous work, we study this classical combinatorial game on edge-periodic graphs. These are graphs with an infinite lifetime comprised of discrete time steps such that each edge e is assigned a bit pattern of length \(l_e\), with a 1 in the i-th position of the pattern indicating the presence of edge e in the i-th step of each consecutive block of \(l_e\) steps. Utilising the known framework of reachability games, we obtain an \(O(\textsf {LCM}(L)\cdot n^3)\) time algorithm to decide if a given n-vertex edge-periodic graph \(G^\tau \) is cop-win or robber-win as well as compute a strategy for the winning player (here, L is the set of all edge pattern lengths \(l_e\), and \(\textsf {LCM}(L)\) denotes the least common multiple of the set L). For the special case of edge-periodic cycles, we prove an upper bound of \(2\cdot l \cdot \textsf {LCM}(L)\) on the minimum length required of any edge-periodic cycle to ensure that it is robber-win, where \(l = 1\) if \(\textsf {LCM}(L) \ge 2\cdot \max L \), and \(l=2\) otherwise. Furthermore, we provide constructions of edge-periodic cycles that are cop-win and have length \(1.5 \cdot \textsf {LCM}(L)\) in the \(l=1\) case and length \(3\cdot \textsf {LCM}(L)\) in the \(l=2\) case.

Notes

Acknowledgements

The authors would like to thank Maciej Gazda for helpful discussions regarding reachability games, as well as an anonymous reviewer for a suggestion leading to the running-time for the variant with k cops mentioned at the end of Sect. 3.

References

  1. 1.
    Aigner, M., Fromme, M.: A game of cops and robbers. Discret. Appl. Math. 8(1), 1–12 (1984).  https://doi.org/10.1016/0166-218X(84)90073-8MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berarducci, A., Intrigila, B.: On the cop number of a graph. Adv. Appl. Math. 14(4), 389–403 (1993).  https://doi.org/10.1006/aama.1993.1019MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berwanger, D.: Graph games with perfect information. arXiv:1407.1647 (2013)
  4. 4.
    Bonato, A., MacGillivray, G.: A general framework for discrete-time pursuit games (2015). Unpublished manuscriptGoogle Scholar
  5. 5.
    Bonato, A., Nowakowski, R.: The Game of Cops and Robbers on Graphs, Student Mathematical Library, vol. 61. American Mathematical Society, Providence (2011).  https://doi.org/10.1090/stml/061CrossRefzbMATHGoogle Scholar
  6. 6.
    Casteigts, A.: A Journey Through Dynamic Networks (with Excursions). Habilitation à diriger des recherches, University of Bordeaux, June 2018. https://tel.archives-ouvertes.fr/tel-01883384
  7. 7.
    Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) ADHOC-NOW 2011. LNCS, vol. 6811, pp. 346–359. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22450-8_27CrossRefGoogle Scholar
  8. 8.
    Chung, T.H., Hollinger, G.A., Isler, V.: Search and pursuit-evasion in mobile robotics. Auton. Robot. 31(4), 299–316 (2011).  https://doi.org/10.1007/s10514-011-9241-4CrossRefGoogle Scholar
  9. 9.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games: A Guide to Current Research. Springer, New York (2002).  https://doi.org/10.1007/3-540-36387-4CrossRefzbMATHGoogle Scholar
  10. 10.
    Hahn, G., MacGillivray, G.: A note on k-cop, l-robber games on graphs. Discret. Math. 306(19), 2492–2497 (2006).  https://doi.org/10.1016/j.disc.2005.12.038. Creation and Recreation: A Tribute to the Memory of Claude BergeMathSciNetCrossRefGoogle Scholar
  11. 11.
    Kehagias, A., Konstantinidis, G.: Cops and robbers, game theory and Zermelo’s early results. arXiv:1407.1647 (2014)
  12. 12.
    Kehagias, A., Mitsche, D., Pralat, P.: The role of visibility in pursuit/evasion games. Robotics 4, 371–399 (2014)CrossRefGoogle Scholar
  13. 13.
    Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Internet Math. 12(4), 239–280 (2016).  https://doi.org/10.1080/15427951.2016.1177801MathSciNetCrossRefGoogle Scholar
  14. 14.
    Michail, O., Spirakis, P.G.: Elements of the theory of dynamic networks. Commun. ACM 61(2), 72–72 (2018).  https://doi.org/10.1145/3156693CrossRefGoogle Scholar
  15. 15.
    Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discret. Math. 43(2), 235–239 (1983).  https://doi.org/10.1016/0012-365X(83)90160-7MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Parsons, T.D.: Pursuit-evasion in a graph. In: Alavi, Y., Lick, D.R. (eds.) Theory and Applications of Graphs, pp. 426–441. Springer, Heidelberg (1978).  https://doi.org/10.1007/BFb0070400CrossRefGoogle Scholar
  17. 17.
    Patsko, V., Kumkov, S., Turova, V.: Pursuit-evasion games. In: Basar, T., Zaccour, G. (eds.) Handbook of Dynamic Game Theory, pp. 1–87. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-319-27335-8-30-1CrossRefGoogle Scholar
  18. 18.
    Quilliot, A.: Jeux et pointes fixes sur les graphes. Ph.D. thesis, University of Paris VI (1978)Google Scholar
  19. 19.
    Rankin, B.A.: Ramanujan: Twelve lectures on subjects suggested by his life and work. Math. Gaz. 45(352), 166 (1961).  https://doi.org/10.1017/S0025557200044892CrossRefGoogle Scholar
  20. 20.
    Seymour, P., Thomas, R.: Graph searching and a min-max theorem for tree-width. J. Comb. Theory Ser. B 58(1), 22–33 (1993).  https://doi.org/10.1006/jctb.1993.1027MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of InformaticsUniversity of LeicesterLeicesterEngland

Personalised recommendations