Advertisement

GRaCe: A Relaxed Approach for Graph Query Caching

  • Francesco De FinoEmail author
  • Barbara Catania
  • Giovanna Guerrini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12011)

Abstract

SPARQL query optimization is an important issue for RDF data stores that can benefit from the usage of caching frameworks. Most caching approaches rely on a precise match semantics, that limits the number of cache hits and, as a consequence, the potential benefit. Others propose relaxed matches for the entire query, which is precisely executed over the cached result set. In this paper, to overcome these limitations we propose GRaCe, a Graph Relaxed Caching approach for RDF data stores. GRaCe supports relaxed cache matches and a relaxed query semantics, thus increasing the number of cache hits. Experimental results show that a relaxed cache can significantly reduce query execution time in all the scenarios where a relaxed query result is tolerated.

References

  1. 1.
    Chekol, M.W., Euzenat, J., Genevès, P., Layaïda, N.: SPARQL query containment under RDFS entailment regime. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 134–148. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31365-3_13CrossRefGoogle Scholar
  2. 2.
    De Fino, F.: Relaxation meets caching: towards smart caching approaches for graph query processing. Ph.D. thesis. University of Genova, Italy (2020, in preparation)Google Scholar
  3. 3.
    Fard, A., et al.: Effective caching techniques for accelerating pattern matching queries. In: Big Data 2014, pp. 491–499 (2014)Google Scholar
  4. 4.
    Frosini, R., et al.: Flexible query processing for SPARQL. Semant. Web 8(4), 533–563 (2017)CrossRefGoogle Scholar
  5. 5.
    Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems. J. Web Semant. 3(2–3), 158–182 (2005)CrossRefGoogle Scholar
  6. 6.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRefGoogle Scholar
  7. 7.
    Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and sparse graphs. In: International Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 135–149 (2007)CrossRefGoogle Scholar
  8. 8.
    Lorey, J., Naumann, F.: Caching and prefetching strategies for SPARQL queries. In: Cimiano, P., Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC 2013. LNCS, vol. 7955, pp. 46–65. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41242-4_5CrossRefGoogle Scholar
  9. 9.
    Mailis, T., et al.: An efficient index for RDF query containment. In: SIGMOD Conference 2019, pp. 1499–1516 (2019)Google Scholar
  10. 10.
    Martin, M., Unbehauen, J., Auer, S.: Improving the performance of semantic web applications with SPARQL query caching. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6089, pp. 304–318. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13489-0_21CrossRefGoogle Scholar
  11. 11.
    Papailiou, N., et al.: Graph-aware, workload-adaptive SPARQL query caching. In: SIGMOD Conference 2015, pp. 1777–1792 (2015)Google Scholar
  12. 12.
    Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF, W3C recommendation (2008). https://www.w3.org/TR/rdf-sparql-query/
  13. 13.
    Stocker, M., et al.: SPARQL basic graph pattern optimization using selectivity estimation. In: WWW 2008, pp. 595–604 (2008)Google Scholar
  14. 14.
    Wang, J., et al.: GC: a graph caching system for subgraph/supergraph queries. PVLDB 11(12), 2022–2025 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Francesco De Fino
    • 1
    Email author
  • Barbara Catania
    • 1
  • Giovanna Guerrini
    • 1
  1. 1.University of GenovaGenoaItaly

Personalised recommendations