Skip to main content

On the Hardness of Energy Minimisation for Crystal Structure Prediction

  • Conference paper
  • First Online:
SOFSEM 2020: Theory and Practice of Computer Science (SOFSEM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12011))

Abstract

Crystal Structure Prediction (csp) is one of the central and most challenging problems in materials science and computational chemistry. In csp, the goal is to find a configuration of ions in 3D space that yields the lowest potential energy. Finding an efficient procedure to solve this complex optimisation question is a well known open problem in computational chemistry. Due to the exponentially large search space, the problem has been referred in several materials-science papers as “NP-Hard” without any formal proof. This paper fills a gap in the literature providing the first set of formally proven NP-Hardness results for a variant of csp with various realistic constraints. In particular, this work focuses on the problem of removal: the goal is to find a substructure with minimal energy, by removing a subset of the ions from a given initial structure. The main contributions are NP-Hardness results for the csp removal problem, new embeddings of combinatorial graph problems into geometrical settings, and a more systematic exploration of the energy function to reveal the complexity of csp. These results contribute to the wider context of the analysis of computational problems for weighted graphs embedded into the 3-dimensional Euclidean space, where our NP-Hardness results holds for complete graphs with edges which are weighted proportional to the distance between the vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamson, D., Deligkas, A., Gusev, V., Potapov, I.: On the Hardness of Energy Minimisation for Crystal Structure Prediction. arXiv.org/abs/1910.12026

  2. Ageev, A.A., Kelmanov, A.V., Pyatkin, A.V.: Np-hardness of the euclidean max-cut problem. Doklady Math. 89, 343–345 (2014)

    Article  MathSciNet  Google Scholar 

  3. Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys. A: Math. Gen. 15(10), 3241–3253 (1982)

    Article  MathSciNet  Google Scholar 

  4. Buckingham, R.A.: The classical equation of state of gaseous helium, neon and argon. Proc. Royal Soc. London Ser. A. Math. Phys. Sci. 168(933), 264–283 (1938)

    Article  Google Scholar 

  5. Cerioli, M.R., Faria, L., Ferreira, T.O., Protti, F.: A note on maximum independent sets and minimum clique partitions in unit disk graphs and penny graphs: complexity and approximation. RAIRO 45(3), 331–346 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Disc. Math. 86(1), 165–177 (1990)

    Article  MathSciNet  Google Scholar 

  7. Zanella, M., et al.: Accelerated discovery of two crystal structure types in a complex inorganic phase field. Nature 546(7657), 280 (2017)

    Article  Google Scholar 

  8. Krishnamoorthy, M., Deo, N.: Node-deletion np-complete problems. SIAM J. Comput. 8(4), 619–625 (1979)

    Article  MathSciNet  Google Scholar 

  9. Lyakhov, A.O., Oganov, A.R., Mario, V.: How to predict very large and complex crystal structures. Comput. Phys. Commun. 181(9), 1623–1632 (2010)

    Article  Google Scholar 

  10. Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar k-means problem is np-hard. In: WALCOM: Algorithms and Computation, pp. 274–285 (2009)

    Chapter  Google Scholar 

  11. Oganov, A.R.: Crystal structure prediction: reflections on present status and challenges. Faraday Discuss. 211, 643–660 (2018)

    Article  Google Scholar 

  12. Oganov, A.R., Glass, C.W.: Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. phys. 124(24), 244704 (2006)

    Article  Google Scholar 

  13. Wille, L.T., Vennik, J.: Computational complexity of the ground-state determination of atomic clusters. J. Phys. A: Math. Gen. 18(8), L419–L422 (1985)

    Article  MathSciNet  Google Scholar 

  14. Woodley, S.M., Catlow, R.: Crystal structure prediction from first principles. Nat. Mater. 7(12), 937 (2008)

    Article  Google Scholar 

  15. Yannakakis, M.: Node-and edge-deletion np-complete problems. In: STOC, vol. 1978, pp. 253–264 (1978)

    Google Scholar 

  16. Yannakakis, M.: Node-deletion problems on bipartite graphs. SIAM J. Comput. 10(2), 310–327 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan Adamson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adamson, D., Deligkas, A., Gusev, V.V., Potapov, I. (2020). On the Hardness of Energy Minimisation for Crystal Structure Prediction. In: Chatzigeorgiou, A., et al. SOFSEM 2020: Theory and Practice of Computer Science. SOFSEM 2020. Lecture Notes in Computer Science(), vol 12011. Springer, Cham. https://doi.org/10.1007/978-3-030-38919-2_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38919-2_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38918-5

  • Online ISBN: 978-3-030-38919-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics