Advertisement

A Characterization of the Context-Free Languages by Stateless Ordered Restart-Delete Automata

  • Friedrich OttoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12011)

Abstract

We consider stateless ordered restart-delete automata, which are actually just stateless ordered restarting automata (stl-ORWW-automata) that have an additional delete operation. While the stl-ORWW-automata just accept the regular languages, we show that the context-free languages are characterized by the swift stateless ordered restart-delete automaton, that is, by the stateless ordered restart-delete automaton that can move its window to any position after performing a restart.

Keywords

Restarting automaton Ordered rewriting Context-free language 

References

  1. 1.
    Book, R., Otto, F.: String-Rewriting Systems. Springer, New York (1993).  https://doi.org/10.1007/978-1-4613-9771-7_3CrossRefzbMATHGoogle Scholar
  2. 2.
    Buntrock, G., Otto, F.: Growing context-sensitive languages and Church-Rosser languages. Inf. Comput. 141, 1–36 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Černo, P., Mráz, F.: Clearing restarting automata. Fund. Inform. 104, 17–54 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dahlhaus, E., Warmuth, M.: Membership for growing context-sensitive grammars is polynomial. J. Comput. Syst. Sci. 33, 456–472 (1986)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-60249-6_60CrossRefGoogle Scholar
  6. 6.
    Kwee, K., Otto, F.: On the effects of nondeterminism on ordered restarting automata. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM 2016. LNCS, vol. 9587, pp. 369–380. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49192-8_30CrossRefzbMATHGoogle Scholar
  7. 7.
    Lopatková, M., Plátek, M., Sgall, P.: Towards a formal model for functional generative description: analysis by reduction and restarting automata. Prague Bull. Math. Linguist. 87, 7–26 (2007)Google Scholar
  8. 8.
    McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal languages. J. ACM 35, 324–344 (1988)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mráz, F., Otto, F.: Ordered restarting automata for picture languages. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 431–442. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04298-5_38CrossRefGoogle Scholar
  10. 10.
    Otto, F.: Restarting automata. In: Ésik, Z., Martín-Vide, C., Mitrana, V. (eds.) Recent Advances in Formal Languages and Applications, Studies in Computational Intelligence, vol. 25, pp. 269–303. Springer, Berlin (2006)Google Scholar
  11. 11.
    Otto, F.: On the descriptional complexity of deterministic ordered restarting automata. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 318–329. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09704-6_28CrossRefzbMATHGoogle Scholar
  12. 12.
    Otto, F.: On deterministic ordered restart-delete automata. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 529–540. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98654-8_43CrossRefGoogle Scholar
  13. 13.
    Otto, F.: On deterministic ordered restart-delete automata. Theor. Comp. Sci. 795, 257–274 (2019)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Rosenkrantz, D.J.: Matrix equations and normal forms for context-free grammars. J. ACM 14, 501–507 (1967)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Fachbereich Elektrotechnik/InformatikUniversität KasselKasselGermany

Personalised recommendations