Towards the Named Entity Recognition Methods in Biomedical Field

  • Anna Śniegula
  • Aneta Poniszewska-MarańdaEmail author
  • Łukasz Chomątek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12011)


Natural Language Processing (NLP) is very important in modern data processing taking into consideration different sources, forms and purpose of data as well as information in different areas our industry, administration, public and private life. Our studies concern Natural Language Processing techniques in biomedical field. The increasing volume of information stored in medical health record databases both in natural language and in structured forms is creating increasing challenges for information retrieval (IR) technologies. The paper presents the comparison study of chosen Named Entity Recognition techniques for biomedical field.


Machine learning Natural Language Processing Recurrent neural networks Named Entity Recognition Conditional Random Fields Long-Short Term Memory Genia corpus 


  1. 1.
    Abacha, A.B., Zweigenbaum, P.: Medical entity recognition: a comparison of semantic and statistical methods. In: Proceedings of BioNLP 2011 Workshop, BioNLP 2011, pp. 56–64 (2011)Google Scholar
  2. 2.
    Allahyari, M., et al.: A Brief Survey of Text Mining: Classifiation, Clustering and Extraction Techniques (2017)Google Scholar
  3. 3.
    Baevski, A., Edunov, S., Liu, Y., Zettlemoyer, L., Auli, M.: Cloze-driven Pretraining of Self-attention Networks.
  4. 4.
    Boag, W., Sergeeva, E., Kulshreshtha, S., Szolovits, P., Rumshisky, A., Naumann, T.: CliNER 2.0: Accessible and Accurate Clinical Concept Extraction.
  5. 5.
    Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by Gibbs sampling. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, ACL 2005, pp. 363–370 (2005) Google Scholar
  6. 6.
    Hatzivassiloglou, V., Dubou, P.A., Rzhetsky, A.: Disambiguating proteins, genes, and RNA in text: a machine learning approach. Bioinformatics 17(Suppl. 1), S97–S106 (2001). ISSN 1367-4803CrossRefGoogle Scholar
  7. 7.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). ISSN 0899-7667CrossRefGoogle Scholar
  8. 8.
    Jiang, R., Banchs, R.E., Li, H.: Evaluating and Combining Name Entity Recognition System, pp. 21–27.
  9. 9.
    Jurafsky, D., Martin, J.H.: Speech and Language Processing, 2nd edin. Prentice Hall, Upper Saddle River (2009). ISBN 978-0-13-187321-6Google Scholar
  10. 10.
    Meystre, S.M., Savova, G.K., Kipper-Schuler, K.C., Hurdle, J.F.: Extracting information from textual documents in the electronic health record: a review of recent research. Yearb. Med. Inf. 17, 128–144 (2008). ISSN 0943-4747CrossRefGoogle Scholar
  11. 11.
    Pradhan, S., et al.: Evaluating the state of the art in disorder recognition and normalization of the clinical narrative. J. Am. Med. Inf. Assoc. 22(1), 143–154 (2014). ISSN 1527-974XCrossRefGoogle Scholar
  12. 12.
    Qin, Y., Zeng, Y.: Research of clinical named entity recognition based on Bi-LSTM-CRF. J. Shanghai Jiaotong Univ. (Sci.) 23(3), 392–397 (2018)CrossRefGoogle Scholar
  13. 13.
    Qiu, J., Wang, Q., Zhou, Y., Ruan, T., Gao, J.: Fast and accurate recognition of chinese clinical named entities with residual dilated convolutions. In: Proceedings of IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 935–942 (2018)Google Scholar
  14. 14.
    Quimbaya, A.P., et al.: Named entity recognition over electronic health records through a combined dictionary-based approach. Procedia Comput. Sci. 100, 55–61 (2016)CrossRefGoogle Scholar
  15. 15.
    Sasaki, Y., Tsuruoka, Y., McNaught, J., Ananiadou, S.: How to make the most of NE dictionaries in statistical NER. BMC Bioinform. 9(11), S5 (2008). ISSN 1471-2105CrossRefGoogle Scholar
  16. 16.
    Song, Y.-J., Jo, B.-C., Park, C.-Y., Kim, J.-D., Kim, Y.-S.: Comparison of named entity recognition methodologies in biomedical documents. BioMed. Eng. OnLine 17(2), 158 (2018)CrossRefGoogle Scholar
  17. 17.
    Sun, W., Cai, Z., Li, Y., Liu, F., Fang, S., Wang, G.: Data processing and text mining technologies on electronic medical records: a review. J. Healthc. Eng. 2018, 4302425 (2018)CrossRefGoogle Scholar
  18. 18.
    Sutton, C., McCallum, A.: An Introduction to Conditional Random Fields. arXiv:1011.4088 [stat], November 2010
  19. 19.
    Zhang, J., et al.: Category multi-representation: a unified solution for named entity recognition in clinical texts. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10938, pp. 275–287. Springer, Cham (2018). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Informatics in EconomyUniversity of LodzLodzPoland
  2. 2.Institute of Information TechnologyLodz University of TechnologyLodzPoland

Personalised recommendations