Advertisement

Sharing Energy for Optimal Edge Performance

  • Erol GelenbeEmail author
  • Yunxiao Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12011)

Abstract

Using the Energy Packet Network (EPN) model, we show how energy can be shared between heterogenous servers at the edge to minimize the overall average response time of jobs. The system is modeled as a probabilistic network where energy and jobs are being dispatched to the edge servers using G-Networks with a product-form solution for the equilibrium probability distribution of system state. The approach can also be used to design energy dispatching systems when renewable energy is used to improve the sustainability of edge computing.

Notes

Acknowledgements

This research was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 780572, through the SKK4ED project which aims to minimize the cost, development time and complexity of low-energy software development processes, by providing tools for automatic optimization of multiple quality requirements, such as technical debt, energy efficiency, dependability and performance.

References

  1. 1.
    Al-Ali, A., Aburukba, R.: Role of Internet of Things in the smart grid technology. J. Comput. Commun. 3(05), 229 (2015)CrossRefGoogle Scholar
  2. 2.
    Antepli, M.A., Uysal-Biyikoglu, E., Erkal, H.: Optimal packet scheduling on an energy harvesting broadcast link. IEEE J. Sel. Areas Commun. 29(8), 1712–1731 (2011)CrossRefGoogle Scholar
  3. 3.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. netw. 54(15), 2787–2805 (2010)CrossRefGoogle Scholar
  4. 4.
    Bi, H., Abdelrahman, O.H.: Energy-aware navigation in large-scale evacuation using g-networks. Probab. Eng. Inf. Sci. 1, 1–13 (2016)zbMATHGoogle Scholar
  5. 5.
    Black, M., Strbac, G.: Value of bulk energy storage for managing wind power fluctuations. IEEE Trans. Energy Convers. 22(1), 197–205 (2007)CrossRefGoogle Scholar
  6. 6.
    Coskun, C.C., Davaslioglu, K., Ayanoglu, E.: An energy-efficient resource allocation algorithm with QOS constraints for heterogeneous networks. In: 2015 IEEE on Global Communications Conference (GLOBECOM), pp. 1–7. IEEE, December 2015Google Scholar
  7. 7.
    Da Xu, L., He, W., Li, S.: Internet of things in industries: a survey. IEEE Trans. Ind. Inform. 10(4), 2233–2243 (2014)CrossRefGoogle Scholar
  8. 8.
    Fourneau, J.M., Gelenbe, E.: G-networks with adders. Fut. Internet 9(3), 34 (2017).  https://doi.org/10.3390/fi9030034CrossRefGoogle Scholar
  9. 9.
    Fourneau, J., Marin, A., Balsamo, S.: Modeling energy packets networks in the presence of failures. In: 24th IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, MASCOTS 2016, London, United Kingdom, 19–21 September 2016, pp. 144–153 (2016).  https://doi.org/10.1109/MASCOTS.2016.44
  10. 10.
    Gatzianas, M., Georgiadis, L., Tassiulas, L.: Control of wireless networks with rechargeable batteries. IEEE Trans. Wireless Commun. 9(2), 581–593 (2010).  https://doi.org/10.1109/TWC.2010.080903CrossRefGoogle Scholar
  11. 11.
    Gelenbe, E.: Réseaux neuronaux aléatoires stables. Comptes rendus de l’Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’Univers, Sciences de la Terre 310(3), 177–180 (1990)Google Scholar
  12. 12.
    Gelenbe, E.: G-networks by triggered customer movement. J. Appl. Probab. 30(3), 742–748 (1993)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gelenbe, E.: G-networks with signals and batch removal. Probab. Eng. Inf. Sci. 7(3), 335–342 (1993).  https://doi.org/10.1017/S0269964800002953MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gelenbe, E.: Energy packet networks: ICT based energy allocation and storage. In: Rodrigues, J.J.P.C., Zhou, L., Chen, M., Kailas, A. (eds.) GreeNets 2011. LNICST, vol. 51, pp. 186–195. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33368-2_16CrossRefGoogle Scholar
  15. 15.
    Gelenbe, E.: Energy packet networks: adaptive energy management for the cloud. In: CloudCP 2012 Proceedings of the 2nd International Workshop on Cloud Computing Platforms, p. 1. ACM (2012).  https://doi.org/10.1145/2168697.2168698
  16. 16.
    Gelenbe, E.: Energy packet networks: smart electricity storage to meet surges in demand. In: Proceedings of the 5th International ICST Conference on Simulation Tools and Techniques, pp. 1–7. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2012)Google Scholar
  17. 17.
    Gelenbe, E.: A sensor node with energy harvesting. ACM SIGMETRICS Perform. Eval. Rev. 42(2), 37–39 (2014)CrossRefGoogle Scholar
  18. 18.
    Gelenbe, E., Abdelrahman, O.H.: An energy packet network model for mobile networks with energy harvesting. Nonlinear Theor. Appl. IEICE 9(3), 1–15 (2018).  https://doi.org/10.1587/nolta.9.1CrossRefGoogle Scholar
  19. 19.
    Gelenbe, E., Caseau, Y.: The impact of information technology on energy consumption and carbon emissions. Ubiquity 2015, 1 (2015)CrossRefGoogle Scholar
  20. 20.
    Gelenbe, E., Ceran, E.T.: Central or distributed energy storage for processors with energy harvesting. In: Sustainable Internet and ICT for Sustainability (SustainIT), 2015, pp. 1–3. IEEE (2015)Google Scholar
  21. 21.
    Gelenbe, E., Ceran, E.T.: Energy packet networks with energy harvesting. IEEE Access 4, 1321–1331 (2016)CrossRefGoogle Scholar
  22. 22.
    Gelenbe, E., Fourneau, J.M.: G-networks with resets. Perform. Eval. 49(1), 179–191 (2002)CrossRefGoogle Scholar
  23. 23.
    Gelenbe, E., Labed, A.: G-networks with multiple classes of signals and positive customers. Eur. J. Oper. Res. 108, 293–305 (1998)CrossRefGoogle Scholar
  24. 24.
    Gelenbe, E., Marin, A.: Interconnected wireless sensors with energy harvesting. In: Gribaudo, M., Manini, D., Remke, A. (eds.) ASMTA 2015. LNCS, vol. 9081, pp. 87–99. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18579-8_7CrossRefGoogle Scholar
  25. 25.
    Gelenbe, E., Morfopoulou, C.: A framework for energy-aware routing in packet networks. Comput. J. 54(6), 850–859 (2010)CrossRefGoogle Scholar
  26. 26.
    Gelenbe, E., Wu, F.J.: Future research on cyber-physical emergency management systems. Fut. Internet 5(3), 336–354 (2013)CrossRefGoogle Scholar
  27. 27.
    Gelenbe, E., Zhang, Y.: Performance optimization with energy packets. IEEE Syst. J. 13(4), 2770–2780 (2019)CrossRefGoogle Scholar
  28. 28.
    Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a vision, architectural elements, and future directions. Fut. Gener. Comput. Syst. 29(7), 1645–1660 (2013)CrossRefGoogle Scholar
  29. 29.
    Kadioglu, Y.M.: Finite capacity energy packet networks. Probab. Eng. Inf. Sci. 31(4), 477–504 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Kadioglu, Y.M., Gelenbe, E.: Product form solution for cascade networks with intermittent energy. IEEE Systems Journal (2018, accepted for publication)Google Scholar
  31. 31.
    Mao, Z., Koksal, C.E., Shroff, N.B.: Near optimal power and rate control of multi-hop sensor networks with energy replenishment: Basic limitations with finite energy and data storage. IEEE Trans. Autom. Control 57(4), 815–829 (2012).  https://doi.org/10.1109/TAC.2011.2166310MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Newcombe, L.: Data centre energy efficiency metrics: existing and proposed metrics to provide effective understanding and reporting of data centre energy. BCS: British Computer Society (2008). http://www.bcs.org/upload/pdf/data-centre-energy.pdf
  33. 33.
    Perera, C., Liu, C.H., Jayawardena, S., Chen, M.: A survey on internet of things from industrial market perspective. IEEE Access 2, 1660–1679 (2014).  https://doi.org/10.1109/ACCESS.2015.2389854CrossRefGoogle Scholar
  34. 34.
    Rahimi, A., Zorlu, Ö., Muhtaroglu, A., Kulah, H.: Fully self-powered electromagnetic energy harvesting system with highly efficient dual rail output. IEEE Sens. J. 12(6), 2287–2298 (2012)CrossRefGoogle Scholar
  35. 35.
    Sarkar, S., Khouzani, M.H.R., Kar, K.: Optimal routing and scheduling in multihop wireless renewable energy networks. IEEE Trans. Autom. Control 58(7), 1792–1798 (2013).  https://doi.org/10.1109/TAC.2013.2250074MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Shaikh, F.K., Zeadally, S., Exposito, E.: Enabling technologies for green Internet of Things. IEEE Syst. J. 11(2), 983–994 (2017).  https://doi.org/10.1109/JSYST.2015.2415194CrossRefGoogle Scholar
  37. 37.
    Takahashi, R., Azuma, S.I., Tashiro, K., Hikihara, T.: Design and experimental verification of power packet generation system for power packet dispatching system. In: American Control Conference (ACC), 2013, pp. 4368–4373. IEEE (2013)Google Scholar
  38. 38.
    Takahashi, R., Takuno, T., Hikihara, T.: Estimation of power packet transfer properties on indoor power line channel. Energies 5(7), 2141–2149 (2012)CrossRefGoogle Scholar
  39. 39.
    Van Heddeghem, W., Lambert, S., Lannoo, B., Colle, D., Pickavet, M., Demeester, P.: Trends in worldwide ict electricity consumption from 2007 to 2012. Comput. Commun. 50, 64–76 (2014)CrossRefGoogle Scholar
  40. 40.
    Wade, N.S., Taylor, P., Lang, P., Jones, P.: Evaluating the benefits of an electrical energy storage system in a future smart grid. Energy Policy 38(11), 7180–7188 (2010)CrossRefGoogle Scholar
  41. 41.
    Whitmore, A., Agarwal, A., Da Xu, L.: The Internet of Things: a survey of topics and trends. Inf. Syst. Front. 17(2), 261–274 (2015)CrossRefGoogle Scholar
  42. 42.
    Yang, J., Ulukus, S.: Optimal packet scheduling in an energy harvesting communication system. IEEE Trans. Commun. 60(1), 220–230 (2012)CrossRefGoogle Scholar
  43. 43.
    Yin, Y.: Optimum energy for energy packet networks. Probab. Eng. Inf. Sci. 31(4), 516–539 (2017)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart cities. IEEE Internet of Things J. 1(1), 22–32 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Theoretical and Applied InformaticsPolish Academy of SciencesGliwicePoland
  2. 2.Laboratoire I3S, Université Côte d’AzurNiceFrance
  3. 3.Imperial CollegeLondonUK

Personalised recommendations