Advertisement

Refined Parameterizations for Computing Colored Cuts in Edge-Colored Graphs

  • Nils MorawietzEmail author
  • Niels Grüttemeier
  • Christian Komusiewicz
  • Frank Sommer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12011)

Abstract

In the Colored \((s,t)\hbox {-}{\textsc {cut}}\) problem, the input is a graph \(G=(V,E)\) together with an edge-coloring \(\ell :E\rightarrow C\), two vertices s and t, and a number k. The question is whether there is a set \(S\subseteq C\) of at most k colors, such that deleting every edge with a color from S destroys all paths between s and t in G. We continue the study of the parameterized complexity of Colored \((s,t)\hbox {-}{\textsc {cut}}\). First, we consider parameters related to the structure of G. For example, we study parameterization by the number \(\xi _i\) of edge deletions that are needed to transform G into a graph with maximum degree i. We show that Colored \((s,t)\hbox {-}{\textsc {cut}}\) is \(\mathrm {W}[2]\)-hard when parameterized by \(\xi _3\), but fixed-parameter tractable when parameterized by \(\xi _2\). Second, we consider parameters related to the coloring \(\ell \). We show fixed-parameter tractability for three parameters that are potentially smaller than the total number of colors |C| and provide a linear-size problem kernel for a parameter related to the number of edges with a rare edge color.

References

  1. 1.
    Coudert, D., Datta, P., Perennes, S., Rivano, H., Voge, M.: Shared risk resource group complexity and approximability issues. Parallel Process. Lett. 17(2), 169–184 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Coudert, D., Pérennes, S., Rivano, H., Voge, M.: Combinatorial optimization in networks with shared risk link groups. Discret. Math. Theor. C. 18(3) (2016)Google Scholar
  3. 3.
    Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21275-3CrossRefzbMATHGoogle Scholar
  4. 4.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS. Springer, London (2013).  https://doi.org/10.1007/978-1-4471-5559-1CrossRefzbMATHGoogle Scholar
  5. 5.
    Faragó, A.: A graph theoretic model for complex network failure scenarios. In: Proceedings of the Eighth INFORMS Telecommunications Conference (2006)Google Scholar
  6. 6.
    Fellows, M.R., Guo, J., Kanj, I.A.: The parameterized complexity of some minimum label problems. J. Comput. Syst. Sci. 76(8), 727–740 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jha, S., Sheyner, O., Wing, J.: Two formal analyses of attack graphs. In: Proceedings of 15th IEEE Computer Security Foundations Workshop, pp. 49–63. IEEE (2002)Google Scholar
  8. 8.
    Klein, S., Faria, L., Sau, I., Sucupira, R., Souza, U.: On colored edge cuts in graphs. In: Sociedade Brasileira de Computaçao, Editor, Primeiro Encontro de Teoria da Computaçao–ETC. CSBC (2016)Google Scholar
  9. 9.
    Pióro, M., Medhi, D.: Routing, Flow, and Capacity Design in Communication and Computer Networks. Morgan Kaufmann, Burlington (2004)zbMATHGoogle Scholar
  10. 10.
    Sheyner, O., Haines, J.W., Jha, S., Lippmann, R., Wing, J.M.: Automated generation and analysis of attack graphs. In: Proceedings 2002 IEEE Symposium on Security and Privacy, pp. 273–284. IEEE Computer Society (2002)Google Scholar
  11. 11.
    Sucupira, R.A.: Problemas de cortes de arestas maximos e mínimos em grafos. Ph.D. thesis, Universidade Federal do Rio de Janeiro (2017)Google Scholar
  12. 12.
    Wang, Y., Desmedt, Y.: Edge-colored graphs with applications to homogeneous faults. Inf. Process. Lett. 111(13), 634–641 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zhang, P., Fu, B.: The label cut problem with respect to path length and label frequency. Theor. Comput. Sci. 648, 72–83 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Fachbereich Mathematik und InformatikPhilipps-Universität MarburgMarburgGermany

Personalised recommendations