Advertisement

Parallel Duel-and-Sweep Algorithm for the Order-Preserving Pattern Matching

  • Davaajav JargalsaikhanEmail author
  • Diptarama Hendrian
  • Ryo Yoshinaka
  • Ayumi Shinohara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12011)

Abstract

Given a text and a pattern over an alphabet, the classic exact matching problem searches for all occurrences of pattern P in text T. Unlike the exact matching problem, order-preserving pattern matching considers the relative order of elements, rather than their exact values. In this paper, we propose the first parallel algorithm for the OPPM problem. Our algorithm is based on the “duel-and-sweep” algorithm. For a pattern of length m and a text of length n, our algorithm runs in \(O(\log ^ 3 m)\) time and \(O(n \log ^ 3 m)\) work on the Priority CRCW PRAM.

Keywords

String matching Order-preserving pattern matching Parallel algorithm 

References

  1. 1.
    Cho, S., Na, J.C., Park, K., Sim, J.S.: A fast algorithm for order-preserving pattern matching. Inf. Process. Lett. 115(2), 397–402 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Hasan, M.M., Islam, A.S., Rahman, M.S., Rahman, M.S.: Order preserving pattern matching revisited. Pattern Recogn. Lett. 55, 15–21 (2015)CrossRefGoogle Scholar
  3. 3.
    JáJá, J.: An Introduction to Parallel Algorithms, vol. 17. Addison-Wesley, Reading (1992)Google Scholar
  4. 4.
    Jargalsaikhan, D., Diptarama, Ueki, Y., Yoshinaka, R., Shinohara, A.: Duel and sweep algorithm for order-preserving pattern matching. In: Tjoa, A., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 624–635. Edizioni della Normale, Cham (2018).  https://doi.org/10.1007/978-3-319-73117-9_44CrossRefGoogle Scholar
  5. 5.
    Kim, J., et al.: Order-preserving matching. Theoret. Comput. Sci. 525, 68–79 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kubica, M., Kulczyński, T., Radoszewski, J., Rytter, W., Waleń, T.: A linear time algorithm for consecutive permutation pattern matching. Inf. Process. Lett. 113(12), 430–433 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Matsuoka, Y., Aoki, T., Inenaga, S., Bannai, H., Takeda, M.: Generalized pattern matching and periodicity under substring consistent equivalence relations. Theoret. Comput. Sci. 656, 225–233 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Vishkin, U.: Optimal parallel pattern matching in strings. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 497–508. Springer, Heidelberg (1985).  https://doi.org/10.1007/BFb0015775CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Davaajav Jargalsaikhan
    • 1
    Email author
  • Diptarama Hendrian
    • 1
  • Ryo Yoshinaka
    • 1
  • Ayumi Shinohara
    • 1
  1. 1.Graduate School of Information SciencesTohoku UniversitySendaiJapan

Personalised recommendations