Advertisement

On the Average State Complexity of Partial Derivative Transducers

  • Stavros Konstantinidis
  • António Machiavelo
  • Nelma Moreira
  • Rogério ReisEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12011)

Abstract

2D regular expressions represent rational relations over two alphabets. In this paper we study the average state complexity of partial derivative standard transducers (\(\mathcal {T}_{\text {PD}}\)) that can be defined for (general) 2D expressions where basic terms are pairs of ordinary regular expressions (1D). While in the worst case the number of states of \(\mathcal {T}_{\text {PD}}\) can be \(O(n^2)\), where n is the size of the expression, asymptotically and on average that value is bounded from above by \(O(n^{\frac{3}{2}})\). Moreover, asymptotically and on average the alphabetic size of a 2D expression is half of the size of that expression. All results are obtained in the framework of analytic combinatorics considering generating functions of parametrised combinatorial classes defined implicitly by algebraic curves. In particular, we generalise the methods developed in previous work to a broad class of analytic functions.

References

  1. 1.
    Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton constructions. Theoret. Comput. Sci. 155(2), 291–319 (1996)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bastos, R., Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average complexity of partial derivative automata for semi-extended expressions. J. Autom. Lang. Comb. 22(1–3), 5–28 (2017)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average state complexity of partial derivative automata: an analytic combinatorics approach. Int. J. Found. Comput. Sci. 22(7), 1593–1606 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Broda, S., Machiavelo, A., Moreira, N., Reis, R.: A Hitchhiker’s Guide to descriptional complexity through analytic combinatorics. Theoret. Comput. Sci. 528, 85–100 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Automata for regular expressions with shuffle. Inf. Comput. 259(2), 162–173 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On average behaviour of regular expressions in strong star normal form. Int. J. Found. Comput. Sci. 30(6–7), 899–920 (2019)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Demaille, A.: Derived-term automata of multitape expressions with composition. Sci. Ann. Comput. Sci. 27(2), 137–176 (2017)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2008)zbMATHGoogle Scholar
  9. 9.
    Ghys, É.: A Singular Mathematical Promenade. ENS Éditions, Lyon (2017)zbMATHGoogle Scholar
  10. 10.
    Hille, E.: Analytic Function Theory, vol. 2. Blaisdell Publishing Company, New York (1962)zbMATHGoogle Scholar
  11. 11.
    Konstantinidis, S., Moreira, N., Pires, J., Reis, R.: Partial derivatives of regular expressions over alphabet-invariant and user-defined labels. In: Hospodár, M., Jirásková, G. (eds.) CIAA 2019. LNCS, vol. 11601, pp. 184–196. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-23679-3_15CrossRefGoogle Scholar
  12. 12.
    Konstantinidis, S., Moreira, N., Reis, R., Young, J.: Regular expressions and transducers over alphabet-invariant and user-defined labels. In: Câmpeanu, C. (ed.) CIAA 2018. LNCS, vol. 10977, pp. 4–27. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94812-6_2CrossRefzbMATHGoogle Scholar
  13. 13.
    Lang, S.: Algebra. Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer, New York (2002).  https://doi.org/10.1007/978-1-4613-0041-0CrossRefzbMATHGoogle Scholar
  14. 14.
    Lombardy, S., Sakarovitch, J.: Derivatives of rational expressions with multiplicity. Theor. Comput. Sci. 332(1–3), 141–177 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mirkin, B.G.: An algorithm for constructing a base in a language of regular expressions. Eng. Cybern. 5, 51–57 (1966)Google Scholar
  16. 16.
    Nicaud, C.: On the average size of Glushkov’s automata. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 626–637. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00982-2_53CrossRefzbMATHGoogle Scholar
  17. 17.
    Walker, R.J.: Algebraic Curves. Princeton University Press, Princeton (1950)zbMATHGoogle Scholar
  18. 18.
    Wall, C.T.C.: Singular Points of Plane Curves. No. 63 in London Mathematical Society Student Texts. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Stavros Konstantinidis
    • 1
  • António Machiavelo
    • 2
  • Nelma Moreira
    • 3
  • Rogério Reis
    • 3
    Email author
  1. 1.Saint Mary’s UniversityHalifaxCanada
  2. 2.CMUP & DM, Faculdade de Ciências da Universidade do PortoPortoPortugal
  3. 3.CMUP & DCC, Faculdade de Ciências da Universidade do PortoPortoPortugal

Personalised recommendations