Advertisement

On Synthesis of Specifications with Arithmetic

  • Rachel FaranEmail author
  • Orna Kupferman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12011)

Abstract

Variable automata with arithmetic enable the specification of reactive systems with variables over an infinite domain of numeric values and whose operation involves arithmetic manipulation of these values [9]. We study the synthesis problem for such specifications. While the problem is in general undecidable, we define a fragment, namely semantically deterministic variable automata with arithmetic, for which the problem is decidable. Essentially, an automaton is semantically deterministic if the restrictions on the possible assignments to the variables that are accumulated along its runs resolve its nondeterministic choices. We show that semantically deterministic automata can specify many interesting behaviors – many more than deterministic ones, and that the synthesis problem for them can be reduced to a solution of a two-player game. For automata with simple guards, the game has a finite state space, and the synthesis problem can be solved in time polynomial in the automaton and exponential in the number of its variables.

References

  1. 1.
    Bloem, R., Chatterjee, K., Jobstmann, B.: Graph games and reactive synthesis. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 921–962. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-10575-8_27CrossRefGoogle Scholar
  2. 2.
    Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data trees and XML reasoning. J. ACM 56(3), 1–48 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bouajjani, A., Habermehl, P., Mayr, R.R.: Automatic verification of recursive procedures with one integer parameter. TCS 295, 85–106 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-Intensive Web Applications. Morgan Kaufmann Publishers Inc., San Francisco (2002)Google Scholar
  5. 5.
    Church, A.: Logic, arithmetics, and automata. In: Proceedings of the International Congress of Mathematicians, 1962, pp. 23–35. Institut Mittag-Leffler (1963)Google Scholar
  6. 6.
    Delzanno, G., Sangnier, A., Traverso, R.: Parameterized verification of broadcast networks of register automata. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp. 109–121. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41036-9_11CrossRefGoogle Scholar
  7. 7.
    Ehlers, R., Seshia, S.A., Kress-Gazit, H.: Synthesis with identifiers. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 415–433. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54013-4_23CrossRefGoogle Scholar
  8. 8.
    Exibard, L., Filiot, E., Reynier, P.-A.: Synthesis of data word transducers. In: Proceedings of the 30th CONCUR (2019)Google Scholar
  9. 9.
    Faran, R., Kupferman, O.: LTL with arithmetic and its applications in reasoning about hierarchical systems. In: Proceedings of the 22nd LPAR. EPiC, vol. 57, pp. 343–362 (2018)Google Scholar
  10. 10.
    Grumberg, O., Kupferman, O., Sheinvald, S.: An automata-theoretic approach to reasoning about parameterized systems and specifications. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 397–411. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-02444-8_28CrossRefzbMATHGoogle Scholar
  11. 11.
    Henzinger, T.A., Piterman, N.: Solving games without determinization. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 395–410. Springer, Heidelberg (2006).  https://doi.org/10.1007/11874683_26CrossRefGoogle Scholar
  12. 12.
    Khalimov, A., Kupferman, O.: Register bounded synthesis. In: Proceedings of the 30th CONCUR (2019)Google Scholar
  13. 13.
    Khalimov, A., Maderbacher, B., Bloem, R.: Bounded synthesis of register transducers. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 494–510. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01090-4_29CrossRefGoogle Scholar
  14. 14.
    Kupferman, O., Safra, S., Vardi, M.Y.: Relating word and tree automata. Ann. Pure Appl. Logic 138(1–3), 126–146 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proceedings of the 46th FoCS, pp. 531–540 (2005)Google Scholar
  16. 16.
    Neven, F., Schwentick, T., Vianu, V.: Towards regular languages over infinite alphabets. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 560–572. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44683-4_49CrossRefGoogle Scholar
  17. 17.
    Niwiński, D., Walukiewicz, I.: Relating hierarchies of word and tree automata. In: Morvan, M., Meinel, C., Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 320–331. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0028571 CrossRefGoogle Scholar
  18. 18.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of the 16th POPL, pp. 179–190 (1989)Google Scholar
  19. 19.
    Safra, S.: On the complexity of \(\omega \)-automata. In: Proceedings of the 29th FoCS, pp. 319–327 (1988)Google Scholar
  20. 20.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, Hoboken (1999) zbMATHGoogle Scholar
  21. 21.
    Shemesh, Y., Francez, N.: Finite-state unification automata and relational languages. Inf. Comput. 114, 192–213 (1994)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Vianu, V.: Automatic verification of database-driven systems: a new frontier. In: ICDT 2009, pp. 1–13 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.The Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations