Advertisement

Statistical Approach to Fuzzy Cognitive Maps

  • Vesa A. NiskanenEmail author
Chapter
  • 19 Downloads
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 391)

Abstract

Fuzzy cognitive maps are studied from statistical standpoint. An analogy between these maps and linear regression and logistic regression models is drawn. Practical examples are also provided.

Keywords

Fuzzy cognitive maps Regression models 

Notes

Acknowledgements

I express my thanks to the distinguished Editors for having this opportunity to be one of the contributors of this book. This article is dedicated to the memory of my mentor and friend, the great Professor Lotfi Zadeh.

References

  1. 1.
    R. Axelrod, Structure of Decision. The Cognitive Maps of Political Elites (Princeton University Press, Princeton, 1976)Google Scholar
  2. 2.
    H. Bandemer, W. Näther, Fuzzy Data Analysis (Kluwer, Dordrecht, 1992)CrossRefGoogle Scholar
  3. 3.
    M. Buruzs, M. Hatwágner L.T. Kóczy, Expert-based method of integrated waste management systems for developing fuzzy cognitive map, in Complex System Modelling and Control Through Intelligent Soft Computations. Studies in Fuzziness and Soft Computing, vol. 319, ed. by Q. Zhu, A. Azar (2015), pp. 111–137Google Scholar
  4. 4.
    J.P. Carvalho, J. Tome, Rule based fuzzy cognitive maps in socio-economic systems, in Proceedings of the IFSA Congress (Lisbon, 2009), pp. 1821–1826Google Scholar
  5. 5.
    S. Chiu, Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2, 267–278 (1994)CrossRefGoogle Scholar
  6. 6.
    V. Dimitrov, B. Hodge, Social Fuzziology—Study of Fuzziness of Social Complexity (Physica Verlag, Heidelberg, 2002)zbMATHGoogle Scholar
  7. 7.
    D. Freedman, Statistical models: Theory and practice (Cambridge University Press, Cambridge, 2005)CrossRefGoogle Scholar
  8. 8.
    Fuzzy Logic User’s Guide 2018a, Mathworks, 2018, www.mathworks.com/help/pdf_doc/fuzzy/fuzzy.pdf
  9. 9.
    M. Glykas (ed.), Fuzzy Cognitive Maps (Springer, Heidelberg, 2010)zbMATHGoogle Scholar
  10. 10.
    P. Grzegorzewski, O. Hryniewicz, M. Gil, Soft Methods in Probability. Statistics and Data Analysis (Physica Verlag, Heidelberg, 2002)CrossRefGoogle Scholar
  11. 11.
    M. Hatwagner, V. Niskanen L. Koczy, Behavioral analysis of fuzzy cognitive map models by simulation, in Proceedings of the IFSA ’17 Congress, Otsu, Japan, https://ieeexplore.ieee.org/abstract/document/8023345/
  12. 12.
    S. Kim, C. Lee, Fuzzy implications of fuzzy cognitive map with emphasis on fuzzy causal relationship and fuzzy partially causal relationship. Fuzzy Sets Syst. 97(3), 303–3013 (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    B. Kosko, Fuzzy Engineering (Prentice Hall, Upper Saddle River, New Jersey, 1997)Google Scholar
  14. 14.
    K.C. Lee, W.J. Lee, O.B. Kwon, J.H. Han, P.I. Yu, Strategic planning simulation based on fuzzy cognitive map knowledge and differential game. Simulation 71(5), 316–327 (1998)CrossRefGoogle Scholar
  15. 15.
    R. Kruse, K. Meyer, Statistics with Vague Data (Reidel, Dordrecht, 1987)CrossRefGoogle Scholar
  16. 16.
    J. Metsämuuronen, Essentials in Research Methods in Human Sciences, Multivariate Analysis (Sage, London, 2017)Google Scholar
  17. 17.
    J. Metsämuuronen, Essentials in Research Methods in Human Sciences, Advanced Analysis (Sage, London, 2017)Google Scholar
  18. 18.
    V.A. Niskanen, Application of logistic regression analysis to fuzzy cognitive maps, in Fuzzy Logic Theory and Applications, vol. 2, ed. by L. Zadeh, R. Aliev (World Scientific Publishing, Singapore, 2019)Google Scholar
  19. 19.
    V.A. Niskanen, Concept map approach to approximate reasoning with fuzzy extended logic, in Fuzzy Technology: Present Applications and Future Technology, Studies in Fuzziness and Soft Computing, vol. 335, ed. by M. Fedrizzi, M. Collan, J. Kacprzyk, (Springer, Heidelberg, 2016), pp. 47–70Google Scholar
  20. 20.
    J. Novak, Learning, Creating, and Using Knowledge: Concept Maps as Facilitative Tools in Schools and Corporations (Lawrence Erlbaum Associates Inc, New Jersey, 1998)CrossRefGoogle Scholar
  21. 21.
    E. Papageorgiou, E. Stylios, P. Groumpos, Fuzzy cognitive map learning based on nonlinear Hebbian rule, in AI 2003. LNCS (LNAI), vol. 2903, ed. by T. Gedeon, L. Fung (Springer, 2003), pp. 256–268Google Scholar
  22. 22.
    W. Pedrycz, A. Jastrzebska, W. Homenda, Design of fuzzy cognitive maps for modeling time series. IEEE Transactions of Fuzzy Systems 24(1), 120–130 (2016)CrossRefGoogle Scholar
  23. 23.
    W. Stach, L. Kurgan, W. Pedrycz, Expert-based and computational methods for developing fuzzy cognitive maps, in Fuzzy Cognitive Maps, ed. by M. Glykas (Springer, 2010), pp. 24–41Google Scholar
  24. 24.
    W. Stach, L.A. Kurgan W. Pedrycz, Numerical and linguistic prediction of time series with the use of fuzzy cognitive maps. IEEE Trans. Fuzzy Syst. 16 (2008)CrossRefGoogle Scholar
  25. 25.
    W. Stach, L. Kurgan, W. Pedrycz, M. Reformat, Genetic learning of fuzzy cognitive maps. Fuzzy Sets Syst. 153, 371–401 (2005)MathSciNetCrossRefGoogle Scholar
  26. 26.
    W. Stach, L. Kurgan, W. Pedrycz, A survey of fuzzy cognitive map learning methods. Issues Soft Comput. Theory Appl., pp. 71–84 (2005)Google Scholar
  27. 27.
    C. Stylios, P. Groumpos, Modeling complex systems using fuzzy cognitive maps. IEEE Trans. Syst. Man Cybern. Part A 34(1), 155–162 (2004)CrossRefGoogle Scholar
  28. 28.
    F. Wenstøp, Quantitative analysis with linguistic values. Fuzzy Sets Syst. 4, 99–115 (1980)CrossRefGoogle Scholar
  29. 29.
    L. Zadeh, Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 2, 103–111 (1996)CrossRefGoogle Scholar
  30. 30.
    L. Zadeh, Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90(2), 111–127 (1997)MathSciNetCrossRefGoogle Scholar
  31. 31.
    L. Zadeh, From computing with numbers to computing with words—from manipulation of measurements to manipulation of perceptions. IEEE Trans. Circ. Syst. 45, 105–119 (1999)MathSciNetCrossRefGoogle Scholar
  32. 32.
    L. Zadeh, Toward a perception-based theory of probabilistic reasoning with imprecise probabilities. J. Stat. Plann. Infer. 105(2), 233–264 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Economics and ManagementUniversity of HelsinkiHelsinkiFinland

Personalised recommendations