Skip to main content

Potential for Thermal Water Desalination Using Microgrid and Solar Thermal Field Energy Surpluses in an Isolated Community

  • Conference paper
  • First Online:
Smart Cities (ICSC-CITIES 2019)

Abstract

In this work, we present the study of seawater desalination potential using the energy surpluses of a microgrid based on renewable energies and a thermosolar absorption cooling system, installed in the isolated community of Puertecitos, Mexico and its primary school, respectively. Given the profile of electricity demand of the community in winter and the non-need for air conditioning, both systems can be used for the desalination of seawater, a resource greatly needed in the region because of the scarcity that is presented. Using the software TRNSYS and Aspen Plus, the simulation of the generating systems was carried out, activating a multiple-effect seawater desalination system during a typical week of February with measured data of electrical consumption. The results show that, with the energy available from both systems, it is possible to desalinate 2,500 kg/day of water with a thermal consumption of 25 kW, during 6 h daily operation. The electrical energy supplied by the microgrid contributes four times more to the desalination of water than the thermal solar field. With this production, it is possible to satisfy the basic requirements of hygiene, hydration and food for 25 people.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nations, U.: Sustainable Development Goal 6 Synthesis Report on Water and Sanitation. United Nations, New York (2018). https://doi.org/10.1126/science.278.5339.827

  2. Palenzuela, P., Alarcón-Padilla, D.-C., Zaragoza, G.: Concentrating Solar Power and Desalination Plants. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20535-9

    Book  Google Scholar 

  3. Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marĩas, B.J., Mayes, A.M.: Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008). https://doi.org/10.1038/nature06599

    Article  Google Scholar 

  4. Phillip, W.A., Elimelech, M.: The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011)

    Article  Google Scholar 

  5. Qiblawey, H.M., Banat, F.: Solar thermal desalination technologies. Desalination 220, 633–644 (2008). https://doi.org/10.1016/j.desal.2007.01.059

    Article  Google Scholar 

  6. Kalogirou, S.A.: Seawater desalination using renewable energy sources. Prog. Energy Combust. Sci. 31, 242–281 (2005). https://doi.org/10.1016/j.pecs.2005.03.001

    Article  Google Scholar 

  7. Valero, A., Uche, J., Serra, L.: La desalación como alternativa al plan hidrológico nacional., Zaragoza (2001)

    Google Scholar 

  8. Tariq, R., Sheikh, N.A., Xamán, J., Bassam, A.: An innovative air saturator for humidification-dehumidification desalination application. Appl. Energy 228, 789–807 (2018). https://doi.org/10.1016/j.apenergy.2018.06.135

    Article  Google Scholar 

  9. IDA: Worldwide Desalting Plants Inventory (2006)

    Google Scholar 

  10. Zheng, H., Zheng, H.: Solar desalination system combined with conventional technologies. In: Solar Energy Desalination Technology, pp. 537–622. Elsevier (2017). https://doi.org/10.1016/B978-0-12-805411-6.00007-5

  11. Chorak, A., Palenzuela, P., Alarcón-Padilla, D.C., Ben Abdellah, A.: Experimental characterization of a multi-effect distillation system coupled to a flat plate solar collector field: Empirical correlations. Appl. Therm. Eng. 120, 298–313 (2017). https://doi.org/10.1016/j.applthermaleng.2017.03.115

    Article  Google Scholar 

  12. Palenzuela, P., Alarcón-Padilla, D.C., Zaragoza, G.: Experimental parametric analysis of a solar pilot-scale multi-effect distillation plant. Desalin. Water Treat. 57, 23097–23109 (2016). https://doi.org/10.1080/19443994.2016.1180481

    Article  Google Scholar 

  13. Palenzuela, P., Hassan, A.S., Zaragoza, G., Alarcón-Padilla, D.C.: Steady state model for multi-effect distillation case study: plataforma Solar de Almería MED pilot plant. Desalination 337, 31–42 (2014). https://doi.org/10.1016/j.desal.2013.12.029

    Article  Google Scholar 

  14. Chorak, A., Palenzuela, P., Alarcón-Padilla, D.-C., Abdellah, A.B.: Energetic evaluation of a double-effect LiBr-H2O absorption heat pump coupled to a multi-effect distillation plant at nominal and off-design conditions. Appl. Therm. Eng. 142, 543–554 (2018). https://doi.org/10.1016/J.APPLTHERMALENG.2018.07.014

    Article  Google Scholar 

  15. López-Zavala, R., et al.: A novel LiBr/H2O absorption cooling and desalination system with three pressure levels. Int. J. Refrig 99, 469–478 (2019). https://doi.org/10.1016/J.IJREFRIG.2019.01.003

    Article  Google Scholar 

  16. Mata-Torres, C., Zurita, A., Cardemil, J.M., Escobar, R.A.: Exergy cost and thermoeconomic analysis of a Rankine Cycle + Multi-Effect Distillation plant considering time-varying conditions. Energy Convers. Manag. (2019). https://doi.org/10.1016/j.enconman.2019.04.023

    Article  Google Scholar 

  17. Kershman, S.A., Rheinländer, J., Gabler, H.: Seawater reverse osmosis powered from renewable energy sources - Hybrid wind/photovoltaic/grid power supply for small-scale desalination in Libya. Desalination (2003). https://doi.org/10.1016/S0011-9164(02)01089-5

    Article  Google Scholar 

  18. Kyriakarakos, G., Dounis, A.I., Rozakis, S., Arvanitis, K.G., Papadakis, G.: Polygeneration microgrids: a viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel. Appl. Energy. (2011). https://doi.org/10.1016/j.apenergy.2011.05.038

  19. Bognar, K., Blechinger, P., Behrendt, F.: Seawater desalination in micro grids: an integrated planning approach. Energy. Sustain. Soc. 2, 1–12 (2012). https://doi.org/10.1186/2192-0567-2-14

    Article  Google Scholar 

  20. Astolfi, M., Mazzola, S., Silva, P., Macchi, E.: A synergic integration of desalination and solar energy systems in stand-alone microgrids. Desalination 419, 169–180 (2017). https://doi.org/10.1016/j.desal.2017.05.025

    Article  Google Scholar 

  21. Aguilar-Jiménez, J.A., Velázquez, N., Acuña, A., Cota, R., González, E., González, L., López, R., Islas, S.: Techno-economic analysis of a hybrid PV-CSP system with thermal energy storage applied to isolated microgrids. Sol. Energy 174, 55–65 (2018). https://doi.org/10.1016/j.solener.2018.08.078

    Article  Google Scholar 

  22. Aguilar-Jiménez, J.A., Velázquez, N., López-Zavala, R., González-Uribe, L.A., Beltrán, R., Hernández-Callejo, L.: Simulation of a solar-assisted air-conditioning system applied to a remote school. Appl. Sci. 9, 3398 (2019). https://doi.org/10.3390/app9163398

    Article  Google Scholar 

  23. Bartram, J., Howard, G.: Domestic Water Quantity, Service Level and Health. World Health Organization (2003). https://doi.org/10.1128/JB.187.23.8156

Download references

Acknowledgments

The authors acknowledge CONACYT-SENER-SUSTENTABILIDAD ENERGÉTICA for the support received through the project P09 of CEMIE-Solar as well as a graduate scholarship for J. Armando Aguilar-Jiménez. The authors also acknowledge the CYTED Thematic Network “CIUDADES INTELIGENTES TOTALMENTE INTEGRALES, EFICIENTES Y SOSTENIBLES (CITIES)” no 518RT0558.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jesús Armando Aguilar-Jiménez or Luis Hernández-Callejo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aguilar-Jiménez, J.A., Velázquez, N., Beltrán, R., Hernández-Callejo, L., López-Zavala, R., González-San Pedro, E. (2020). Potential for Thermal Water Desalination Using Microgrid and Solar Thermal Field Energy Surpluses in an Isolated Community. In: Nesmachnow, S., Hernández Callejo, L. (eds) Smart Cities. ICSC-CITIES 2019. Communications in Computer and Information Science, vol 1152. Springer, Cham. https://doi.org/10.1007/978-3-030-38889-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38889-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38888-1

  • Online ISBN: 978-3-030-38889-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics