Advertisement

Digital Techniques for Broadband and Linearized Transmitters

  • Karun Rawat
  • Patrick Roblin
  • Shiban Kishen Koul
Chapter
  • 34 Downloads
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

This chapter presents linearization techniques for multiband and broadband operations on system as well as algorithm levels. The chapter highlights the limitations of the established digital predistortion (DPD) linearization techniques for broadband transmission. To alleviate these limitations of conventional DPD schemes, the hybrid predistortion techniques are presented in detail, which take advantage of best features of “analog” as well as “digital” processing domains. Predistortion techniques rely on accurate characterization of intermodulation distortion (IMD) terms and their precise control can mitigate the nonlinearity in the PA. However, Delta-sigma technique is further presented for high-efficiency switched-mode PA applications, where amplitude is kept constant by converting the signal into pulses to drive the high-efficiency switched-mode PAs. Keeping with the discussion of high efficiency, linearization challenges for multiband envelop tracking application is also presented and various digital techniques are compared in terms of linearization performance.

Keywords

Multiband transmitters Nonlinear modeling Wideband hybrid predistortion Vector modulator Envelope tracking and behavioral modeling 

References

  1. 1.
    Shen, Z., Papasakellariou, A., Montojo, J., Gerstenberger, D., & Xu, F. (2012). Overview of 3GPP LTE-advanced carrier aggregation for 4G wireless communications. IEEE Communications Magazine, 50(2), 122–130.CrossRefGoogle Scholar
  2. 2.
    Bassam, S. A., Chen, W., Helaoui, M., & Ghannouchi, F. M. (2013). Transmitter architecture for CA: Carrier aggregation in LTE-advanced systems. IEEE Microwave Magazine, 14(5), 78–86.CrossRefGoogle Scholar
  3. 3.
    Saad, P., Colantonio, P., Piazzon, L., Giannini, F., Andersson, K., & Fager, C. (2012). Design of a concurrent dual-band 1.8–2.4-GHz GaN-HEMT Doherty power amplifier. IEEE Transactions on Microwave Theory and Techniques, 60(6), 1840–1849.CrossRefGoogle Scholar
  4. 4.
    Rawat, K., & Ghannouchi, F. M. (2012). Design methodology for dual-band Doherty power amplifier with performance enhancement using dual-band offset lines. IEEE Transactions on Industrial Electronics, 59(12), 4831–4842.CrossRefGoogle Scholar
  5. 5.
    Liu, R., Schreurs, D., De Raedt, W., Vanaverbeke, F., & Mertens, R. (2011). Concurrent dual-band power amplifier with different operation modes. IEEE MTT-S International Microwave Symposium Digest, pp. 1–4.Google Scholar
  6. 6.
    Wang, Z., & Park, C.-W. (2012). Concurrent tri-band GaN HEMT power amplifier using resonators in both input and output matching networks. Proceedings of IEEE Wireless Microwave Technology Conference (WAMICON), pp. 1–4.Google Scholar
  7. 7.
    Nghiem, X. A., & Negra, R. (2012). Novel design of a concurrent tri-band GaN-HEMT Doherty power amplifier. Asia Pacific Microwave Conference Proceedings (APMC), pp. 364–366.Google Scholar
  8. 8.
    Kwan, A. K., et al. (2014). Concurrent multi-band envelope modulated power amplifier linearized using extended phase-aligned DPD. IEEE Transactions on Microwave Theory and Techniques, 62(12), 3298–3308.CrossRefGoogle Scholar
  9. 9.
    Younes, M., Kwan, A., Rawat, M., & Ghannouchi, F. M. (2013). Linearization of concurrent tri-band transmitters using 3-D phase-aligned pruned Volterra model. IEEE Transactions on Microwave Theory and Techniques, 61(12), 4569–4578.CrossRefGoogle Scholar
  10. 10.
    LTE. (2013). Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception (release 11).Google Scholar
  11. 11.
    Liu, Y., Roblin, P., Yu, H., Shao, S., & Tang, Y. (2015). Novel multiband linearization technique for closely-spaced dual-band signals of wide bandwidth. IEEE MTT-S International Microwave Symposium Digest, pp. 1–4.Google Scholar
  12. 12.
    Rawat, M., Roblin, P., Quindroit, C., Salam, K., & Xie, C. (2015). Concurrent dual-band modeling and digital predistortion in the presence of unfilterable harmonic signal interference. IEEE Transactions on Microwave Theory and Techniques, 63(2), 95–104.CrossRefGoogle Scholar
  13. 13.
    Jaraut, P., Rawat, M., & Ghannouchi, F. M. (2018). Harmonically related concurrent tri-band behavioral modeling and digital predistortion. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(6), 1073–1077.CrossRefGoogle Scholar
  14. 14.
    Mehmood, Y., Haider, N., Imran, M., Timm-Giel, A., & Guizani, M. (2017). M2M communications in 5G: State-of-the-art architecture, recent advances, and research challenges. IEEE Communications Magazine, 55(9), 194–201.CrossRefGoogle Scholar
  15. 15.
    Checko, A., et al. (2015). Cloud RAN for mobile networks-a technology overview. IEEE Communication Surveys and Tutorials, 17(1), 405–426.CrossRefGoogle Scholar
  16. 16.
    Alimi, I. A., Teixeira, A. L., & Monteiro, P. P. (2018). Toward an efficient C-RAN optical Fronthaul for the future networks: A tutorial on technologies, requirements, challenges, and solutions. IEEE Communication Surveys and Tutorials, 20(1), 708–769.CrossRefGoogle Scholar
  17. 17.
    Qian, H. J., Liang, J. O., & Luo, X. (2016). Wideband digital power amplifiers with efficiency improvement using 40-nm LP CMOS technology. IEEE Transactions on Microwave Theory and Techniques, 64(3), 675–687. CrossRefGoogle Scholar
  18. 18.
    Park, J. S., Wang, Y., Pellerano, S., Hull, C., & Wang, H. (2018). A CMOS wideband current-mode digital polar power amplifier with built-in AM–PM distortion self-compensation. IEEE Journal of Solid-State Circuits, 53(2), 340–356.CrossRefGoogle Scholar
  19. 19.
    MB86L11A 2G/3G/4G LTE Transceiver, fujitsu. (2018). Retrieved from https://www.fujitsu.com/downloads/MICRO/fswp/pdf/products/FSWP_RFT_MB86L11A_FS.pdf.
  20. 20.
    Tripathi, G. C., Rawat, M., & Roblin, P. (2019). Harmonic cancellation technique for ultra-wideband filter-less 5G. 93rd ARFTG microwave measurement conference, Boston, MA.Google Scholar
  21. 21.
    Rawat, M., Roblin, P., Quindroit, C., Salam, K., & Xie, C. (2014). Digitally supported feed-forward harmonic cancellation for filter-less ultra-wideband transmitters. IEEE International Microwave and RF Conference, Bangalore, India, pp. 84–87.Google Scholar
  22. 22.
    Yu, H., Ratnasamy, V., Roblin, P., Rawat, M., & Xie, C. (2015). Automatic feed-forward cancelation of modulated harmonic. IEEE 86th ARFTG microwave measurement conference, pp. 1–3.Google Scholar
  23. 23.
    Samulak, A., Fischer, G., &Weigel, R. (2008). Demonstrator of Class-S Power Amplifier based on GaN transistors. IEEE German Microwaves Conference (GeMIC).Google Scholar
  24. 24.
    Morgan, D. R. (2013). A three-state signal coding scheme for high efficiency class-S amplifiers. IEEE Transactions on Circuits and Systems-I, 60(7), 1681–1691.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Aggrawal, E., Rawat, K., & Roblin, P. (2017). Investigating continuous class-F power amplifier using nonlinear embedding model. Microwave and Wireless Components Letters, 27, 593–595.CrossRefGoogle Scholar
  26. 26.
    Li, Y., Montgomery, B. J., & Neihart, N. M.. (2016). Development of a concurrent dual-band switch-mode power amplifier based on current-switching class-D configuration. IEEE Wireless and Microwave Technology Conference (WAMICON).Google Scholar
  27. 27.
    Kumar, N., Datt Poonia, J., & Rawat, K. (2017). Class S power amplifier based on CSCD with delta-sigma modulation. 2017 IEEE applied electromagnetics conference, AEMC, Aurangabad, pp. 1–2.Google Scholar
  28. 28.
    Ebrahimi, M. M., Helaoui, M., & Ghannouchi, F. M. (2009). Efficiency enhancement of a WiMAX switching mode GaN power amplifier through layout optimization of distributed harmonic matching networks. Proc. IEEE European Microwave Conference, pp. 1732–1735.Google Scholar
  29. 29.
    Johnson, T., & Stapleton, S. P. (2006). RF class-D amplification with bandpass sigma–delta modulator drive signals. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(12), 2507–2520.CrossRefGoogle Scholar
  30. 30.
    Ebrahimi, M. M., Helaoui, M., & Ghannouchi, F. M. (2013). Delta-sigma-based transmitters: Advantages and disadvantages. IEEE Microwave Magazine, 14(1), 68–78.CrossRefGoogle Scholar
  31. 31.
    Nielsen, M., & Larsen, T. (2007). A transmitter architecture based on delta–sigma modulation and switch-mode power amplification. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(8), 735–739.CrossRefGoogle Scholar
  32. 32.
    Ebrahimi, M. M., Helaoui, M., & Ghannouchi, F. M. (2011). Time-interleaved delta-sigma modulator for wideband digital GHz transmitters design and SDR applications. Journal of Progress Electromagnetics Research B, 34, 263–281.CrossRefGoogle Scholar
  33. 33.
    Ghannouchi, F. M., Hatami, S., Aflaki, P., Helaoui, M., & Negra, R. (2010). Accurate power efficiency estimation of GHz wireless delta sigma transmitters for different classes of switching mode power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 58(11), 2812–2819.CrossRefGoogle Scholar
  34. 34.
    Kumar, N., & Rawat, K. (2018). Delta sigma modulation based digital transmitter for single and dual band transmission. IEEE MTT-S International Microwave and RF Conference (IMaRC), Kolkata, pp. 1–4.Google Scholar
  35. 35.
    Schreier, R., & Temes, G. C. (2005). Understanding delta-sigma data converters. Piscataway, NJ: IEEE Press.Google Scholar
  36. 36.
    Aziz, P. M., Sorensen, H. V., & Spiegel, J. (1996). An overview of sigma-delta converters. IEEE Signal Processing Magazine, 13(1), 61–84.CrossRefGoogle Scholar
  37. 37.
    Jouzdani, M., Ebrahimi, M. M., Helaoui, M., & Ghannouchi, F. M. (2017). Complex delta–sigma-based transmitter with enhanced linearity performance using pulsed load modulation power amplifier. IEEE Transactions on Microwave Theory and Techniques, 65(9), 3324–3335.CrossRefGoogle Scholar
  38. 38.
    Cordeiro, R. F., Prata, A., Oliveira, A. S. R., Vieira, J. M. N., & De Carvalho, N. B. (2017). Agile all-digital RF transceiver implemented in FPGA. IEEE Transactions on Microwave Theory and Techniques, 65(11), 4229–4240.CrossRefGoogle Scholar
  39. 39.
    Ebrahimi, M. M., & Helaoui, M. (2013). Reducing quantization noise to boost efficiency and signal bandwidth in delta–sigma-based transmitters. IEEE Transactions on Microwave Theory and Techniques, 61(12), 4245–4251.CrossRefGoogle Scholar
  40. 40.
    Grebennikov, A. (2011). RF and microwave transmitter design (1st ed.). New York: Wiley.CrossRefGoogle Scholar
  41. 41.
    Zhu, Q., Ma, R., Duan, C., Teo, K. H., & Parsons, K. (2014). A 5-level discrete-time power encoder with measured coding efficiency of 70% for 20-MHz LTE digital transmitter. IEEE MTT-S International Microwave Symposium.Google Scholar
  42. 42.
    Podsiadlik, T., Dooley, J., & Farrell, R. (2018). Analysis of 3-level bandpass sigma-delta modulators with 2-level output. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(4), 506–510.CrossRefGoogle Scholar
  43. 43.
    Elsayed, F., & Helaoui, M. (2013). Linearized multi-level Δ Σ modulated wireless transmitters for SDR applications using simple DLGA algorithm. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(4), 594–601.CrossRefGoogle Scholar
  44. 44.
    Kumar, N., & Rawat, K. (2017). Efficiency enhancement in delta-sigma modulator based transmitter using level transformation. IEEE MTT-S International Microwave and RF Conference (IMaRC), Ahmedabad, pp. 1–5.Google Scholar
  45. 45.
    Singh, R., Tripathi, G. C., & Rawat, M. (2015). Performance analysis of multilevel delta sigma modulators for 3G/4G communication. 2015 IEEE UP Section Conference on Electrical Computer and Electronics (UPCON), Allahabad, pp. 1–5.Google Scholar
  46. 46.
    Ebrahimi, M. M., Helaoui, M., & Ghannouchi, F. M. (2012). Improving coding efficiency by compromising linearity in delta-sigma based transmitters. IEEE Radio and Wireless Symposium, pp. 411–414.Google Scholar
  47. 47.
    Hu, Y., & Boumaiza, S. (2016). Power scalable wideband linearization of power amplifier. IEEE Transactions on Microwave Theory and Techniques, 64(5), 1456–1464.CrossRefGoogle Scholar
  48. 48.
    Gumber, K., & Rawat, M. (2017). A modified hybrid RF Predistorter linearizer for ultra wideband 5G systems. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 7(4), 547–557.CrossRefGoogle Scholar
  49. 49.
    Gumber, K., & Rawat, M. (2018). Low cost RFin-RFout predistorter linearizer for high power amplifier and ultra-wideband signals. IEEE Transactions on Instrumentation and Measurement, 67(9), 2069–2081.CrossRefGoogle Scholar
  50. 50.
    Rawat, K., Rawat, M., & Ghannouchi, F. M. (2010). Compensating I-Q imperfections in hybrid RF/ digital predistortion with adapted look up table implemented in FPGA. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(5), 389–393.CrossRefGoogle Scholar
  51. 51.
    Jaraut, P., & Rawat, M. (2017). 3D generalized coefficient supported model for concurrent dual-band digital predistortion of envelope tracking power amplifier. IEEE MTT-S International Microwave & RF Conference, Ahmedabad, India, pp. 1–4.Google Scholar
  52. 52.
    Gilabert, P., & Montoro, G. (2015). 3-D distributed memory polynomial behavioral model for concurrent dual-band envelope tracking power amplifier linearization. IEEE Transactions on Microwave Theory and Techniques, 63(2), 638–648.CrossRefGoogle Scholar
  53. 53.
    Cidronali, A., Giovannelli, N., Mercanti, M., Maddio, S., & Manes, G. (2013). Concurrent dual-band envelope tracking GaN PA design and its 2d shaping function characterization. International Journal of Microwave and Wireless Technology, 5, 669–681.CrossRefGoogle Scholar
  54. 54.
    Gilabert, P., Montoro, G., Lopez, D., & Garcia, J. (2013). 3D digital predistortion for dual-band envelope tracking power amplifiers. Proceedings of Asia–Pacific Microwave Conference, pp. 734–736.Google Scholar
  55. 55.
    Kwan, A., Younes, M., Zhang, S., Chen, W., Darraji, R., Helaoui, M., & Ghannouchi, F. M. (2014). Dual-band predistortion linearization of an envelope modulated power amplifier operated in concurrent multi-standard mode. IEEE MTT–S International Microwave Symposium Digest, Tampa Bay, FL, pp. 1–4.Google Scholar
  56. 56.
    Bassam, S., Helaoui, M., & Ghannouchi, F. (2011). 2-D digital predistortion (2-D-DPD) architecture for concurrent dual-band transmitters. IEEE Transactions on Microwave Theory and Techniques, 59(10), 2547–2553. CrossRefGoogle Scholar
  57. 57.
    Liu, Y. J., Zhou, J., Chen, W., Zhou, B., & Ghannouchi, F. M. (2012). Low complexity 2D behavioural model for concurrent dual-band power amplifiers. Electronics Letters, 48(11), 620–621.CrossRefGoogle Scholar
  58. 58.
    Ding, L., Yang, Z., & Gandhi, H., Concurrent dual-band digital predistortion. IEEE MTT-S International Microwave Symposium Digest, Montreal, Canada, pp. 1–3.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Karun Rawat
    • 1
  • Patrick Roblin
    • 2
  • Shiban Kishen Koul
    • 3
  1. 1.Indian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.The Ohio State UniversityColumbusUSA
  3. 3.Indian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations