Advertisement

Adaptive Immunity and the Tumor Microenvironment

Chapter
Part of the Cancer Treatment and Research book series (CTAR, volume 180)

Abstract

The adaptive immune response is a 500-million-year-old (the “Big Bang” of Immunology) collective set of rearranged and/or selected receptors capable of recognizing soluble and cell surface molecules or shape (B cells, antibody), endogenous and extracellular peptides presented by Major Histocompatibility (MHC) molecules including Class I and Class II (conventional αβ T cells), lipid in the context of MHC-like molecules of the CD1 family (NKT cells), metabolites and B7 family molecules/butyrophilins with stress factors (γδT cells), and stress ligands and absence of MHC molecules (natural killer, NK cells). What makes tumor immunogenic is the recruitment of initially innate immune cells to sites of stress or tissue damage with release of Damage-Associated Molecular Pattern (DAMP) molecules. Subsequent maintenance of a chronic inflammatory state, representing a balance between mature, normalized blood vessels, innate and adaptive immune cells and the tumor provides a complex tumor microenvironment serving as the backdrop for Darwinian selection, tumor elimination, tumor equilibrium, and ultimately tumor escape. Effective immunotherapies are still limited, given the complexities of this highly evolved and selected tumor microenvironment. Cytokine therapies and Immune Checkpoint Blockade (ICB) enable immune effector function and are largely dependent on the shape and size of the B and T cell repertoires (the “adaptome”), now accessible by Next-Generation Sequencing (NGS) and dimer-avoidance multiplexed PCR. How immune effectors access the tumor (infiltrated, immune sequestered, and immune desserts), egress and are organized within the tumor are of contemporary interest and substantial investigation.

Keywords

Next-Generation Sequencing (NGS) Polymerase Chain Reaction (PCR) Immune repertoire Adaptome Complement Determine Region 3 (CDR3) Clonetype Αβ T cells Class I MHC Class II MHC CD1 family NKT cells Butyrophilins γδT cells NK cells 

References

  1. 1.
    Vakkila J, Jaffe R, Michelow M, Lotze MT (2006) Pediatric cancers are infiltrated predominantly by macrophages and contain a paucity of dendritic cells: a major nosologic difference with adult tumors. Clin Cancer Res 12(7 Pt 1):2049–2054.  https://doi.org/10.1158/1078-0432.CCR-05-1824 PubMed PMID: 16609014CrossRefPubMedGoogle Scholar
  2. 2.
    Campbell BB, Light N, Fabrizio D, Zatzman M, Fuligni F, de Borja R, Davidson S, Edwards M, Elvin JA, Hodel KP, Zahurancik WJ, Suo Z, Lipman T, Wimmer K, Kratz CP, Bowers DC, Laetsch TW, Dunn GP, Johanns TM, Grimmer MR, Smirnov IV, Larouche V, Samuel D, Bronsema A, Osborn M, Stearns D, Raman P, Cole KA, Storm PB, Yalon M, Opocher E, Mason G, Thomas GA, Sabel M, George B, Ziegler DS, Lindhorst S, Issai VM, Constantini S, Toledano H, Elhasid R, Farah R, Dvir R, Dirks P, Huang A, Galati MA, Chung J, Ramaswamy V, Irwin MS, Aronson M, Durno C, Taylor MD, Rechavi G, Maris JM, Bouffet E, Hawkins C, Costello JF, Meyn MS, Pursell ZF, Malkin D, Tabori U, Shlien A (2017) Comprehensive analysis of hypermutation in human cancer. Cell 171(5):1042–1056.  https://doi.org/10.1016/j.cell.2017.09.048. PubMed PMID: 29056344; PMCID: PMC5849393
  3. 3.
    Bedognetti D, Ceccarelli M, Galluzzi L, Lu R, Palucka K, Samayoa J, Spranger S, Warren S, Wong KK, Ziv E, Chowell D, Coussens LM, De Carvalho DD, DeNardo DG, Galon J, Kaufman HL, Kirchhoff T, Lotze MT, Luke JJ, Minn AJ, Politi K, Shultz LD, Simon R, Thorsson V, Weidhaas JB, Ascierto ML, Ascierto PA, Barnes JM, Barsan V, Bommareddy PK, Bot A, Church SE, Ciliberto G, De Maria A, Draganov D, Ho WS, McGee HM, Monette A, Murphy JF, Nistico P, Park W, Patel M, Quigley M, Radvanyi L, Raftopoulos H, Rudqvist NP, Snyder A, Sweis RF, Valpione S, Butterfield LH, Disis ML, Fox BA, Cesano A, Marincola FM, Society for Immunotherapy of Cancer Cancer Immune Responsiveness Task F, Working G (2019) Toward a comprehensive view of cancer immune responsiveness: a synopsis from the SITC workshop. J Immunother Cancer 7(1):131.  https://doi.org/10.1186/s40425-019-0602-4. PubMed PMID: 31113486
  4. 4.
    Filbin M, Monje M (2019) Developmental origins and emerging therapeutic opportunities for childhood cancer. Nat Med 25(3):367–576.  https://doi.org/10.1038/s41591-019-0383-9 PubMed PMID: 30842674CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lotze MT, Demarco RA (2004) Dying dangerously: necrotic cell death and chronic inflammation promote tumor growth. Discov Med. 4(24):448–556 PubMed PMID: 20704947PubMedGoogle Scholar
  6. 6.
    Demaria S, Pikarsky E, Karin M, Coussens LM, Chen YC, El-Omar EM, Trinchieri G, Dubinett SM, Mao JT, Szabo E, Krieg A, Weiner GJ, Fox BA, Coukos G, Wang E, Abraham RT, Carbone M, Lotze MT (2010) Cancer and inflammation: promise for biologic therapy. J Immunother 33(4):335–351.  https://doi.org/10.1097/cji.0b013e3181d32e74. PubMed PMID: 20386472; PMCID: PMC2941912
  7. 7.
    Huang J, Xie Y, Sun X, Zeh HJ, 3rd, Kang R, Lotze MT, Tang D (2015) DAMPs, ageing, and cancer: the ‘DAMP Hypothesis’. Ageing Res Rev 24(Pt A):3–16.  https://doi.org/10.1016/j.arr.2014.10.004. PubMed PMID: 25446804; PMCID: PMC4416066
  8. 8.
    Dieu-Nosjean MC, Goc J, Giraldo NA, Sautes-Fridman C, Fridman WH (2014) Tertiary lymphoid structures in cancer and beyond. Trends Immunol 35(11):571–580.  https://doi.org/10.1016/j.it.2014.09.006 PubMed PMID: 25443495CrossRefPubMedGoogle Scholar
  9. 9.
    Hiraoka N, Ino Y, Yamazaki-Itoh R (2016) Tertiary lymphoid organs in cancer tissues. Front Immunol 7:244.  https://doi.org/10.3389/fimmu.2016.00244. PubMed PMID: 27446075; PMCID: PMC4916185
  10. 10.
    Engelhard VH, Rodriguez AB, Mauldin IS, Woods AN, Peske JD, Slingluff CL, Jr (2018) Immune cell infiltration and tertiary lymphoid structures as determinants of antitumor immunity. J Immunol 200(2):432–442.  https://doi.org/10.4049/jimmunol.1701269. PubMed PMID: 29311385; PMCID: PMC5777336
  11. 11.
    Jones E, Gallimore A, Ager A (2018) Defining high endothelial venules and tertiary lymphoid structures in cancer. Methods Mol Biol 1845:99–118.  https://doi.org/10.1007/978-1-4939-8709-2_7 PubMed PMID: 30141010CrossRefPubMedGoogle Scholar
  12. 12.
    Tang H, Qiu X, Timmerman C, Fu YX (2018) Targeting tertiary lymphoid structures for tumor immunotherapy. Methods Mol Biol 1845:275–286.  https://doi.org/10.1007/978-1-4939-8709-2_16 PubMed PMID: 30141019CrossRefPubMedGoogle Scholar
  13. 13.
    Weinstein AM, Giraldo NA, Petitprez F, Julie C, Lacroix L, Peschaud F, Emile JF, Marisa L, Fridman WH, Storkus WJ, Sautes-Fridman C (2019) Association of IL-36gamma with tertiary lymphoid structures and inflammatory immune infiltrates in human colorectal cancer. Cancer Immunol Immunother 68(1):109–120.  https://doi.org/10.1007/s00262-018-2259-0 PubMed PMID: 30315348CrossRefPubMedGoogle Scholar
  14. 14.
    Lotze MT, Custer MC, Rosenberg SA (1986) Intraperitoneal administration of interleukin-2 in patients with cancer. Arch Surg 121(12):1373–1379 PubMed PMID: 3491595CrossRefGoogle Scholar
  15. 15.
    Lotze MT, Custer MC, Sharrow SO, Rubin LA, Nelson DL, Rosenberg SA (1987) In vivo administration of purified human interleukin-2 to patients with cancer: development of interleukin-2 receptor positive cells and circulating soluble interleukin-2 receptors following interleukin-2 administration. Cancer Res 47(8):2188–2195 PubMed PMID: 3030546PubMedGoogle Scholar
  16. 16.
    Lotze MT, Matory YL, Ettinghausen SE, Rayner AA, Sharrow SO, Seipp CA, Custer MC, Rosenberg SA (1985) In vivo administration of purified human interleukin 2. II. Half life, immunologic effects, and expansion of peripheral lymphoid cells in vivo with recombinant IL 2. J Immunol 135(4):2865–2875. PubMed PMID: 2993418Google Scholar
  17. 17.
    Lotze MT, Matory YL, Rayner AA, Ettinghausen SE, Vetto JT, Seipp CA, Rosenberg SA (1986) Clinical effects and toxicity of interleukin-2 in patients with cancer. Cancer 58(12):2764–2772 PubMed PMID: 3490903CrossRefGoogle Scholar
  18. 18.
    Lotze MT, Zeh HJ, 3rd, Elder EM, Cai Q, Pippin BA, Rosenstein MM, Whiteside TL, Herberman R (1992) Use of T-cell growth factors (interleukins 2, 4, 7, 10, and 12) in the evaluation of T-cell reactivity to melanoma. J Immunother 12(3):212–217. PubMed PMID: 1359903Google Scholar
  19. 19.
    Gajewski TF, Corrales L, Williams J, Horton B, Sivan A, Spranger S (2017) Cancer immunotherapy targets based on understanding the T cell-inflamed versus non-T cell-inflamed tumor microenvironment. Adv Exp Med Biol 1036:19–31.  https://doi.org/10.1007/978-3-319-67577-0_2 PubMed PMID: 29275462CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fraietta JA, Nobles CL, Sammons MA, Lundh S, Carty SA, Reich TJ, Cogdill AP, Morrissette JJD, DeNizio JE, Reddy S, Hwang Y, Gohil M, Kulikovskaya I, Nazimuddin F, Gupta M, Chen F, Everett JK, Alexander KA, Lin-Shiao E, Gee MH, Liu X, Young RM, Ambrose D, Wang Y, Xu J, Jordan MS, Marcucci KT, Levine BL, Garcia KC, Zhao Y, Kalos M, Porter DL, Kohli RM, Lacey SF, Berger SL, Bushman FD, June CH, Melenhorst JJ (2018) Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558(7709):307–312.  https://doi.org/10.1038/s41586-018-0178-z PubMed PMID: 29849141CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Watanabe K, Luo Y, Da T, Guedan S, Ruella M, Scholler J, Keith B, Young RM, Engels B, Sorsa S, Siurala M, Havunen R, Tahtinen S, Hemminki A, June CH (2018) Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight 3(7).  https://doi.org/10.1172/jci.insight.99573. PubMed PMID: 29618658; PMCID: PMC5928866
  22. 22.
    Forget MA, Haymaker C, Hess KR, Meng YJ, Creasy C, Karpinets T, Fulbright OJ, Roszik J, Woodman SE, Kim YU, Sakellariou-Thompson D, Bhatta A, Wahl A, Flores E, Thorsen ST, Tavera RJ, Ramachandran R, Gonzalez AM, Toth CL, Wardell S, Mansaray R, Patel V, Carpio DJ, Vaughn C, Farinas CM, Velasquez PG, Hwu WJ, Patel SP, Davies MA, Diab A, Glitza IC, Tawbi H, Wong MK, Cain S, Ross MI, Lee JE, Gershenwald JE, Lucci A, Royal R, Cormier JN, Wargo JA, Radvanyi LG, Torres-Cabala CA, Beroukhim R, Hwu P, Amaria RN, Bernatchez C (2018) Prospective analysis of adoptive TIL therapy in patients with metastatic melanoma: response, impact of anti-CTLA4, and biomarkers to predict clinical outcome. Clin Cancer Res.  https://doi.org/10.1158/1078-0432.CCR-17-3649 PubMed PMID: 29848573CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Andersen R, Donia M, Ellebaek E, Borch TH, Kongsted P, Iversen TZ, Holmich LR, Hendel HW, Met O, Andersen MH, Thor Straten P, Svane IM (2016) Long-lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumor-infiltrating lymphocytes and an attenuated IL2 regimen. Clin Cancer Res 22(15):3734–3745.  https://doi.org/10.1158/1078-0432.CCR-15-1879 PubMed PMID: 27006492CrossRefPubMedGoogle Scholar
  24. 24.
    Tran E, Ahmadzadeh M, Lu YC, Gros A, Turcotte S, Robbins PF, Gartner JJ, Zheng Z, Li YF, Ray S, Wunderlich JR, Somerville RP, Rosenberg SA (2015) Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 350(6266):1387–1390.  https://doi.org/10.1126/science.aad1253 PubMed PMID: 26516200CrossRefPubMedGoogle Scholar
  25. 25.
    Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME, Wunderlich JR, Somerville RP, Hogan K, Hinrichs CS, Parkhurst MR, Yang JC, Rosenberg SA (2014) Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344(6184):641–645.  https://doi.org/10.1126/science.1251102 PubMed PMID: 24812403CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Svane IM, Verdegaal EM (2014) Achievements and challenges of adoptive T cell therapy with tumor-infiltrating or blood-derived lymphocytes for metastatic melanoma: what is needed to achieve standard of care? Cancer Immunol Immunother 63(10):1081–1091.  https://doi.org/10.1007/s00262-014-1580-5 PubMed PMID: 25099366CrossRefPubMedGoogle Scholar
  27. 27.
    Rosenberg SA, Spiess P, Lafreniere R (1986) A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233(4770):1318–1321 PubMed PMID: 3489291CrossRefGoogle Scholar
  28. 28.
    Kaczanowska S, Joseph AM, Davila E (2013) TLR agonists: our best frenemy in cancer immunotherapy. J Leukoc Biol 93(6):847–863.  https://doi.org/10.1189/jlb.1012501. PubMed PMID: 23475577; PMCID: PMC3656332
  29. 29.
    Li G, Liang X, Lotze MT (2013) HMGB1: the central cytokine for all lymphoid cells. Front Immunol 4:68.  https://doi.org/10.3389/fimmu.2013.00068. PubMed PMID: 23519706; PMCID: PMC3602962
  30. 30.
    Patidar A, Selvaraj S, Sarode A, Chauhan P, Chattopadhyay D, Saha B (2018) DAMP-TLR-cytokine axis dictates the fate of tumor. Cytokine 104:114–123.  https://doi.org/10.1016/j.cyto.2017.10.004 PubMed PMID: 29032985CrossRefPubMedGoogle Scholar
  31. 31.
    Goubau D, Schlee M, Deddouche S, Pruijssers AJ, Zillinger T, Goldeck M, Schuberth C, Van der Veen AG, Fujimura T, Rehwinkel J, Iskarpatyoti JA, Barchet W, Ludwig J, Dermody TS, Hartmann G, Reis e Sousa C (2014) Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates. Nature 514(7522):372–375.  https://doi.org/10.1038/nature13590. PubMed PMID: 25119032; PMCID: PMC4201573
  32. 32.
    Liu L, Yang M, Kang R, Dai Y, Yu Y, Gao F, Wang H, Sun X, Li X, Li J, Wang H, Cao L, Tang D (2014) HMGB1-DNA complex-induced autophagy limits AIM2 inflammasome activation through RAGE. Biochem Biophys Res Commun 450(1):851–856.  https://doi.org/10.1016/j.bbrc.2014.06.074. PubMed PMID: 24971542; PMCID: PMC4107148
  33. 33.
    Yoshihama S, Roszik J, Downs I, Meissner TB, Vijayan S, Chapuy B, Sidiq T, Shipp MA, Lizee GA, Kobayashi KS (2016) NLRC5/MHC class I transactivator is a target for immune evasion in cancer. Proc Natl Acad Sci U S A. 113(21):5999–6004.  https://doi.org/10.1073/pnas.1602069113. PubMed PMID: 27162338; PMCID: PMC4889388
  34. 34.
    Janeway C (1989) Immunogenicity signals 1,2,3 … and 0. Immunol Today10(9):283–286. PubMed PMID: 2590379Google Scholar
  35. 35.
    Janeway CA Jr, Goodnow CC, Medzhitov R (1996) Danger - pathogen on the premises! Immunological tolerance. Curr Biol. 6(5):519–522 PubMed PMID: 8805259CrossRefGoogle Scholar
  36. 36.
    Jego G, Bataille R, Geffroy-Luseau A, Descamps G, Pellat-Deceunynck C (2006) Pathogen-associated molecular patterns are growth and survival factors for human myeloma cells through Toll-like receptors. Leukemia 20(6):1130–1137.  https://doi.org/10.1038/sj.leu.2404226 PubMed PMID: 16628189CrossRefPubMedGoogle Scholar
  37. 37.
    Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10(12):826–837.  https://doi.org/10.1038/nri2873. PubMed PMID: 21088683; PMCID: PMC3114424
  38. 38.
    Pandey S, Singh S, Anang V, Bhatt AN, Natarajan K, Dwarakanath BS (2015) Pattern recognition receptors in cancer progression and metastasis. Cancer Growth Metastasis 8:25–34.  https://doi.org/10.4137/cgm.s24314. PubMed PMID: 26279628; PMCID: PMC4514171
  39. 39.
    Hou W, Zhang Q, Yan Z, Chen R, Zeh Iii HJ, Kang R, Lotze MT, Tang D (2013) Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis 4:e966.  https://doi.org/10.1038/cddis.2013.493. PubMed PMID: 24336086; PMCID: PMC3877563
  40. 40.
    Martin-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, Sallusto F (2004) Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol 5(12):1260–1265.  https://doi.org/10.1038/ni1138 PubMed PMID: 15531883CrossRefPubMedGoogle Scholar
  41. 41.
    Zinkernagel RM (1978) Thymus and lymphohemopoietic cells: their role in T cell maturation in selection of T cells’ H-2-restriction-specificity and in H-2 linked Ir gene control. Immunol Rev 42:224–270 PubMed PMID: 83701CrossRefGoogle Scholar
  42. 42.
    Zinkernagel RM, Doherty PC (1979) MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Adv Immunol 27:51–177 PubMed PMID: 92183CrossRefGoogle Scholar
  43. 43.
    Zinkernagel RM, Doherty PC (1997) The discovery of MHC restriction. Immunol Today 18(1):14–17 PubMed PMID: 9018968CrossRefGoogle Scholar
  44. 44.
    Wang ZG, Cao Y, D’Urso C, Houghton AN, Ferrone S (1991) Molecular abnormalities in the expression of HLA class-I antigens by melanoma cells. Int J Cancer Suppl 6:101–105 PubMed PMID: 2066175CrossRefGoogle Scholar
  45. 45.
    Wang Z, Margulies L, Hicklin DJ, Ferrone S (1996) Molecular and functional phenotypes of melanoma cells with abnormalities in HLA class I antigen expression. Tissue Antigens 47(5):382–390 PubMed PMID: 8795138CrossRefGoogle Scholar
  46. 46.
    Atkins D, Breuckmann A, Schmahl GE, Binner P, Ferrone S, Krummenauer F, Storkel S, Seliger B (2004) MHC class I antigen processing pathway defects, ras mutations and disease stage in colorectal carcinoma. Int J Cancer 109(2):265–273.  https://doi.org/10.1002/ijc.11681 PubMed PMID: 14750179CrossRefPubMedGoogle Scholar
  47. 47.
    Chang CC, Pirozzi G, Wen SH, Chung IH, Chiu BL, Errico S, Luongo M, Lombardi ML, Ferrone S (2015) Multiple structural and epigenetic defects in the human leukocyte antigen class I antigen presentation pathway in a recurrent metastatic melanoma following immunotherapy. J Biol Chem 290(44):26562–26575.  https://doi.org/10.1074/jbc.M115.676130 PubMed PMID: 26381407; PMCID: PMC4646314CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, Teng KWW, Yeong JPS, Nahar R, Zhang T, Kared H, Duan K, Ang N, Poidinger M, Lee YY, Larbi A, Khng AJ, Tan E, Fu C, Mathew R, Teo M, Lim WT, Toh CK, Ong BH, Koh T, Hillmer AM, Takano A, Lim TKH, Tan EH, Zhai W, Tan DSW, Tan IB, Newell EW (2018) Bystander CD8(+) T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557(7706):575–579.  https://doi.org/10.1038/s41586-018-0130-2 PubMed PMID: 29769722CrossRefPubMedGoogle Scholar
  49. 49.
    Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, Sucker A, Hillen U, Foppen MHG, Goldinger SM, Utikal J, Hassel JC, Weide B, Kaehler KC, Loquai C, Mohr P, Gutzmer R, Dummer R, Gabriel S, Wu CJ, Schadendorf D, Garraway LA (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350(6257):207–211.  https://doi.org/10.1126/science.aad0095 PubMed PMID: 26359337; PMCID: PMC5054517CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT, Watkins TB, Shafi S, Murugaesu N, Mitter R, Akarca AU, Linares J, Marafioti T, Henry JY, Van Allen EM, Miao D, Schilling B, Schadendorf D, Garraway LA, Makarov V, Rizvi NA, Snyder A, Hellmann MD, Merghoub T, Wolchok JD, Shukla SA, Wu CJ, Peggs KS, Chan TA, Hadrup SR, Quezada SA, Swanton C (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351(6280):1463–1469.  https://doi.org/10.1126/science.aaf1490 PubMed PMID: 26940869; PMCID: PMC4984254CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Jerby-Arnon L, Shah P, Cuoco MS, Rodman C, Su MJ, Melms JC, Leeson R, Kanodia A, Mei S, Lin JR, Wang S, Rabasha B, Liu D, Zhang G, Margolais C, Ashenberg O, Ott PA, Buchbinder EI, Haq R, Hodi FS, Boland GM, Sullivan RJ, Frederick DT, Miao B, Moll T, Flaherty KT, Herlyn M, Jenkins RW, Thummalapalli R, Kowalczyk MS, Canadas I, Schilling B, Cartwright ANR, Luoma AM, Malu S, Hwu P, Bernatchez C, Forget MA, Barbie DA, Shalek AK, Tirosh I, Sorger PK, Wucherpfennig K, Van Allen EM, Schadendorf D, Johnson BE, Rotem A, Rozenblatt-Rosen O, Garraway LA, Yoon CH, Izar B, Regev A (2018) A cancer cell program promotes t cell exclusion and resistance to checkpoint blockade. Cell 175(4):984–997.  https://doi.org/10.1016/j.cell.2018.09.006. PubMed PMID: 30388455; PMCID: PMC6410377
  52. 52.
    Appenzeller S, Gesierich A, Thiem A, Hufnagel A, Jessen C, Kneitz H, Regensburger M, Schmidt C, Zirkenbach V, Bischler T, Schilling B, Siedel C, Goebeler ME, Houben R, Schrama D, Gehrig A, Rost S, Maurus K, Bargou R, Rosenwald A, Schartl M, Goebeler M, Meierjohann S (2019) The identification of patient-specific mutations reveals dual pathway activation in most patients with melanoma and activated receptor tyrosine kinases in BRAF/NRAS wild-type melanomas. Cancer 125(4):586–600.  https://doi.org/10.1002/cncr.31843 PubMed PMID: 30561760CrossRefPubMedGoogle Scholar
  53. 53.
    Diehl L, den Boer AT, Schoenberger SP, van der Voort EI, Schumacher TN, Melief CJ, Offringa R, Toes RE (1999) CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nat Med 5(7):774–779.  https://doi.org/10.1038/10495 PubMed PMID: 10395322CrossRefPubMedGoogle Scholar
  54. 54.
    Sotomayor EM, Borrello I, Tubb E, Rattis FM, Bien H, Lu Z, Fein S, Schoenberger S, Levitsky HI (1999) Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nat Med 5(7):780–787.  https://doi.org/10.1038/10503 PubMed PMID: 10395323CrossRefPubMedGoogle Scholar
  55. 55.
    Lode HN, Xiang R, Pertl U, Forster E, Schoenberger SP, Gillies SD, Reisfeld RA (2000) Melanoma immunotherapy by targeted IL-2 depends on CD4(+) T-cell help mediated by CD40/CD40L interaction. J Clin Invest. 105(11):1623–1630.  https://doi.org/10.1172/JCI9177 PubMed PMID: 10841521; PMCID: PMC300854CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Karnell JL, Albulescu M, Drabic S, Wang L, Moate R, Baca M, Oganesyan V, Gunsior M, Thisted T, Yan L, Li J, Xiong X, Eck SC, de Los Reyes M, Yusuf I, Streicher K, Muller-Ladner U, Howe D, Ettinger R, Herbst R, Drappa J (2019) A CD40L-targeting protein reduces autoantibodies and improves disease activity in patients with autoimmunity. Sci Transl Med 11(489).  https://doi.org/10.1126/scitranslmed.aar6584. PubMed PMID: 31019027
  57. 57.
    Sut C, Tariket S, Aloui C, Arthaud CA, Eyraud MA, Fagan J, Chavarin P, Hamzeh-Cognasse H, Laradi S, Garraud O, Cognasse F (2019) Soluble CD40L and CD62P levels differ in single-donor apheresis platelet concentrates and buffy coat-derived pooled platelet concentrates. Transfusion 59(1):16–20.  https://doi.org/10.1111/trf.14974 PubMed PMID: 30291753CrossRefPubMedGoogle Scholar
  58. 58.
    Hirosue S, Vokali E, Raghavan VR, Rincon-Restrepo M, Lund AW, Corthesy-Henrioud P, Capotosti F, Halin Winter C, Hugues S, Swartz MA (2014) Steady-state antigen scavenging, cross-presentation, and CD8+ T cell priming: a new role for lymphatic endothelial cells. J Immunol. 192(11):5002–5011.  https://doi.org/10.4049/jimmunol.1302492 PubMed PMID: 24795456; PMCID: PMC4025611CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R, Barber DL, Konieczny BT, Daugherty CZ, Koenig L, Yu K, Sica GL, Sharpe AH, Freeman GJ, Blazar BR, Turka LA, Owonikoko TK, Pillai RN, Ramalingam SS, Araki K, Ahmed R (2017) Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 355(6332):1423–1427.  https://doi.org/10.1126/science.aaf0683 PubMed PMID: 28280249; PMCID: PMC5595217CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Sugiura D, Maruhashi T, Okazaki IM, Shimizu K, Maeda TK, Takemoto T, Okazaki T (2019) Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science 364(6440):558–566.  https://doi.org/10.1126/science.aav7062 PubMed PMID: 31000591CrossRefPubMedGoogle Scholar
  61. 61.
    Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182(2):459–465.  https://doi.org/10.1084/jem.182.2.459 PubMed PMID: 7543139; PMCID: PMC2192127CrossRefPubMedGoogle Scholar
  62. 62.
    Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348(6230):56–61.  https://doi.org/10.1126/science.aaa8172 PubMed PMID: 25838373CrossRefPubMedGoogle Scholar
  63. 63.
    Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAS, Andrews MC, Sharma P, Wang J, Wargo JA, Pe’er D, Allison JP (2017) Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170(6):1120–1133.  https://doi.org/10.1016/j.cell.2017.07.024. PubMed PMID: 28803728; PMCID: PMC5591072
  64. 64.
    Zitvogel L, Tahara H, Cai Q, Storkus WJ, Muller G, Wolf SF, Gately M, Robbins PD, Lotze MT (1994) Construction and characterization of retroviral vectors expressing biologically active human interleukin-12. Hum Gene Ther 5(12):1493–1506.  https://doi.org/10.1089/hum.1994.5.12-1493 PubMed PMID: 7711142CrossRefPubMedGoogle Scholar
  65. 65.
    Tahara H, Lotze MT (1995) Antitumor effects of interleukin-12 (IL-12): applications for the immunotherapy and gene therapy of cancer. Gene Ther 2(2):96–106 PubMed PMID: 7719935PubMedGoogle Scholar
  66. 66.
    Robertson MJ, Cameron C, Atkins MB, Gordon MS, Lotze MT, Sherman ML, Ritz J (1999) Immunological effects of interleukin 12 administered by bolus intravenous injection to patients with cancer. Clin Cancer Res 5(1):9–16 PubMed PMID: 9918197PubMedGoogle Scholar
  67. 67.
    Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G, Anichini A (2007) Interleukin-12: biological properties and clinical application. Clin Cancer Res 13(16):4677–4685.  https://doi.org/10.1158/1078-0432.CCR-07-0776 PubMed PMID: 17699845CrossRefPubMedGoogle Scholar
  68. 68.
    Behzadi P, Behzadi E, Ranjbar R (2016) IL-12 family cytokines: general characteristics, pathogenic microorganisms, receptors, and signalling pathways. Acta Microbiol Immunol Hung 63(1):1–25.  https://doi.org/10.1556/030.63.2016.1.1 PubMed PMID: 27020866CrossRefPubMedGoogle Scholar
  69. 69.
    Liu Z, Wu L, Zhu J, Zhu X, Zhu J, Liu JQ, Zhang J, Davis JP, Varikuti S, Satoskar AR, Zhou J, Li MS, Bai XF (2017) Interleukin-27 signalling induces stem cell antigen-1 expression in T lymphocytes in vivo. Immunology 152(4):638–647.  https://doi.org/10.1111/imm.12805 PubMed PMID: 28758191; PMCID: PMC5680066CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Sowrirajan B, Saito Y, Poudyal D, Chen Q, Sui H, DeRavin SS, Imamichi H, Sato T, Kuhns DB, Noguchi N, Malech HL, Lane HC, Imamichi T (2017) Interleukin-27 enhances the potential of reactive oxygen species generation from monocyte-derived macrophages and dendritic cells by induction of p47(phox). Sci Rep 7:43441.  https://doi.org/10.1038/srep43441 PubMed PMID: 28240310; PMCID: PMC5327488CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Huang C, Li Z, Li N, Li Y, Chang A, Zhao T, Wang X, Wang H, Gao S, Yang S, Hao J, Ren H (2018) Interleukin 35 expression correlates with microvessel density in pancreatic ductal adenocarcinoma, recruits monocytes, and promotes growth and angiogenesis of xenograft tumors in mice. Gastroenterology 154(3):675–688.  https://doi.org/10.1053/j.gastro.2017.09.039 PubMed PMID: 28989066CrossRefPubMedGoogle Scholar
  72. 72.
    Su LC, Liu XY, Huang AF, Xu WD (2018) Emerging role of IL-35 in inflammatory autoimmune diseases. Autoimmun Rev 17(7):665–673.  https://doi.org/10.1016/j.autrev.2018.01.017 PubMed PMID: 29729445CrossRefPubMedGoogle Scholar
  73. 73.
    Ward SG, Marelli-Berg FM (2009) Mechanisms of chemokine and antigen-dependent T-lymphocyte navigation. Biochem J 418(1):13–27.  https://doi.org/10.1042/BJ20081969 PubMed PMID: 19159344CrossRefPubMedGoogle Scholar
  74. 74.
    Ruane D, Brane L, Reis BS, Cheong C, Poles J, Do Y, Zhu H, Velinzon K, Choi JH, Studt N, Mayer L, Lavelle EC, Steinman RM, Mucida D, Mehandru S (2013) Lung dendritic cells induce migration of protective T cells to the gastrointestinal tract. J Exp Med 210(9):1871–1888.  https://doi.org/10.1084/jem.20122762 PubMed PMID: 23960190; PMCID: PMC3754860CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Boutet M, Gauthier L, Leclerc M, Gros G, de Montpreville V, Theret N, Donnadieu E, Mami-Chouaib F (2016) TGFbeta signaling intersects with CD103 integrin signaling to promote T-lymphocyte accumulation and antitumor activity in the lung tumor microenvironment. Cancer Res 76(7):1757–1769.  https://doi.org/10.1158/0008-5472.CAN-15-1545 PubMed PMID: 26921343CrossRefPubMedGoogle Scholar
  76. 76.
    Bertoni A, Alabiso O, Galetto AS, Baldanzi G (2018) Integrins in T cell physiology. Int J Mol Sci 19(2).  https://doi.org/10.3390/ijms19020485. PubMed PMID: 29415483; PMCID: PMC5855707
  77. 77.
    Stremmel C, Schuchert R, Wagner F, Thaler R, Weinberger T, Pick R, Mass E, Ishikawa-Ankerhold HC, Margraf A, Hutter S, Vagnozzi R, Klapproth S, Frampton J, Yona S, Scheiermann C, Molkentin JD, Jeschke U, Moser M, Sperandio M, Massberg S, Geissmann F, Schulz C (2018) Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat Commun. 9(1):75.  https://doi.org/10.1038/s41467-017-02492-2 PubMed PMID: 29311541; PMCID: PMC5758709CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Peng H, Tian Z (2017) Diversity of tissue-resident NK cells. Semin Immunol 31:3–10.  https://doi.org/10.1016/j.smim.2017.07.006 PubMed PMID: 28802693CrossRefPubMedGoogle Scholar
  79. 79.
    Nakano R, Ohira M, Yano T, Imaoka Y, Tanaka Y, Ohdan H (2018) Hepatic irradiation persistently eliminates liver resident NK cells. PLoS ONE 13(6):e0198904.  https://doi.org/10.1371/journal.pone.0198904 PubMed PMID: 29897952; PMCID: PMC5999234CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Salzberger W, Martrus G, Bachmann K, Goebels H, Hess L, Koch M, Langeneckert A, Lunemann S, Oldhafer KJ, Pfeifer C, Poch T, Richert L, Schramm C, Wahib R, Bunders MJ, Altfeld M (2018) Tissue-resident NK cells differ in their expression profile of the nutrient transporters Glut1, CD98 and CD71. PLoS ONE 13(7):e0201170.  https://doi.org/10.1371/journal.pone.0201170 PubMed PMID: 30028872; PMCID: PMC6054388CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Strid J, Roberts SJ, Filler RB, Lewis JM, Kwong BY, Schpero W, Kaplan DH, Hayday AC, Girardi M (2008) Acute upregulation of an NKG2D ligand promotes rapid reorganization of a local immune compartment with pleiotropic effects on carcinogenesis. Nat Immunol 9(2):146–154.  https://doi.org/10.1038/ni1556 PubMed PMID: 18176566CrossRefPubMedGoogle Scholar
  82. 82.
    Chodaczek G, Papanna V, Zal MA, Zal T (2012) Body-barrier surveillance by epidermal gammadelta TCRs. Nat Immunol 13(3):272–282.  https://doi.org/10.1038/ni.2240 PubMed PMID: 22327568; PMCID: PMC3288780CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Schmolka N, Wencker M, Hayday AC, Silva-Santos B (2015) Epigenetic and transcriptional regulation of gammadelta T cell differentiation: programming cells for responses in time and space. Semin Immunol 27(1):19–25.  https://doi.org/10.1016/j.smim.2015.01.001 PubMed PMID: 25726512CrossRefPubMedGoogle Scholar
  84. 84.
    Bald T, Quast T, Landsberg J, Rogava M, Glodde N, Lopez-Ramos D, Kohlmeyer J, Riesenberg S, van den Boorn-Konijnenberg D, Homig-Holzel C, Reuten R, Schadow B, Weighardt H, Wenzel D, Helfrich I, Schadendorf D, Bloch W, Bianchi ME, Lugassy C, Barnhill RL, Koch M, Fleischmann BK, Forster I, Kastenmuller W, Kolanus W, Holzel M, Gaffal E, Tuting T (2014) Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 507(7490):109–113.  https://doi.org/10.1038/nature13111 PubMed PMID: 24572365CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, Verstegen NJM, Ciampricotti M, Hawinkels L, Jonkers J, de Visser KE (2015) IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522(7556):345–348.  https://doi.org/10.1038/nature14282 PubMed PMID: 25822788; PMCID: PMC4475637CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Park JH, van Wyk H, Roxburgh CSD, Horgan PG, Edwards J, McMillan DC (2017) Tumour invasiveness, the local and systemic environment and the basis of staging systems in colorectal cancer. Br J Cancer 116(11):1444–1450.  https://doi.org/10.1038/bjc.2017.108 PubMed PMID: 28427085; PMCID: PMC5520088CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Liu K, Zhao K, Wang L, Sun E (2018) The prognostic values of tumor-infiltrating neutrophils, lymphocytes and neutrophil/lymphocyte rates in bladder urothelial cancer. Pathol Res Pract 214(8):1074–1080.  https://doi.org/10.1016/j.prp.2018.05.010 PubMed PMID: 29803657CrossRefPubMedGoogle Scholar
  88. 88.
    Mahajan UM, Langhoff E, Goni E, Costello E, Greenhalf W, Halloran C, Ormanns S, Kruger S, Boeck S, Ribback S, Beyer G, Dombroswki F, Weiss FU, Neoptolemos JP, Werner J, D’Haese JG, Bazhin A, Peterhansl J, Pichlmeier S, Buchler MW, Kleeff J, Ganeh P, Sendler M, Palmer DH, Kohlmann T, Rad R, Regel I, Lerch MM, Mayerle J (2018) Immune cell and stromal signature associated with progression-free survival of patients with resected pancreatic ductal adenocarcinoma. Gastroenterology 155(5):1625–1639.  https://doi.org/10.1053/j.gastro.2018.08.009. PubMed PMID: 30092175
  89. 89.
    Spranger S, Gajewski TF (2015) A new paradigm for tumor immune escape: beta-catenin-driven immune exclusion. J Immunother Cancer. 3:43.  https://doi.org/10.1186/s40425-015-0089-6 PubMed PMID: 26380088; PMCID: PMC4570721CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Spranger S, Dai D, Horton B, Gajewski TF (2017) Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31(5):711–723.  https://doi.org/10.1016/j.ccell.2017.04.003. PubMed PMID: 28486109; PMCID: PMC5650691
  91. 91.
    Stix G (2008) Into the uncanny valley. Sci Am 299(6):24, 6–8. PubMed PMID: 19143436Google Scholar
  92. 92.
    Moore RK (2012) A Bayesian explanation of the ‘Uncanny Valley’ effect and related psychological phenomena. Sci Rep. 2:864.  https://doi.org/10.1038/srep00864 PubMed PMID: 23162690; PMCID: PMC3499759CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Sasaki K, Ihaya K, Yamada Y (2017) Avoidance of novelty contributes to the uncanny valley. Front Psychol 8:1792.  https://doi.org/10.3389/fpsyg.2017.01792 PubMed PMID: 29123490; PMCID: PMC5662646CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Barry M, Fruh K (2006) Viral modulators of cullin RING ubiquitin ligases: culling the host defense. Sci STKE 2006(335):pe21.  https://doi.org/10.1126/stke.3352006pe21. PubMed PMID: 16705129
  95. 95.
    Gomez-Tourino I, Kamra Y, Baptista R, Lorenc A, Peakman M (2017) T cell receptor beta-chains display abnormal shortening and repertoire sharing in type 1 diabetes. Nat Commun. 8(1):1792.  https://doi.org/10.1038/s41467-017-01925-2 PubMed PMID: 29176645; PMCID: PMC5702608CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, di Tomaso E, Munn LL, Jain RK (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6(6):553–563.  https://doi.org/10.1016/j.ccr.2004.10.011 PubMed PMID: 15607960CrossRefPubMedGoogle Scholar
  97. 97.
    Shulman Z, Cohen SJ, Roediger B, Kalchenko V, Jain R, Grabovsky V, Klein E, Shinder V, Stoler-Barak L, Feigelson SW, Meshel T, Nurmi SM, Goldstein I, Hartley O, Gahmberg CG, Etzioni A, Weninger W, Ben-Baruch A, Alon R (2011) Transendothelial migration of lymphocytes mediated by intraendothelial vesicle stores rather than by extracellular chemokine depots. Nat Immunol 13(1):67–76.  https://doi.org/10.1038/ni.2173 PubMed PMID: 22138716CrossRefPubMedGoogle Scholar
  98. 98.
    Samaha H, Pignata A, Fousek K, Ren J, Lam FW, Stossi F, Dubrulle J, Salsman VS, Krishnan S, Hong SH, Baker ML, Shree A, Gad AZ, Shum T, Fukumura D, Byrd TT, Mukherjee M, Marrelli SP, Orange JS, Joseph SK, Sorensen PH, Taylor MD, Hegde M, Mamonkin M, Jain RK, El-Naggar S, Ahmed N (2018) A homing system targets therapeutic T cells to brain cancer. Nature 561(7723):331–337.  https://doi.org/10.1038/s41586-018-0499-y PubMed PMID: 30185905; PMCID: PMC6402337CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Fernando NT, Koch M, Rothrock C, Gollogly LK, D’Amore PA, Ryeom S, Yoon SS (2008) Tumor escape from endogenous, extracellular matrix-associated angiogenesis inhibitors by up-regulation of multiple proangiogenic factors. Clin Cancer Res 14(5):1529–1539.  https://doi.org/10.1158/1078-0432.CCR-07-4126 PubMed PMID: 18316578CrossRefPubMedGoogle Scholar
  100. 100.
    Holopainen T, Saharinen P, D’Amico G, Lampinen A, Eklund L, Sormunen R, Anisimov A, Zarkada G, Lohela M, Helotera H, Tammela T, Benjamin LE, Yla-Herttuala S, Leow CC, Koh GY, Alitalo K (2012) Effects of angiopoietin-2-blocking antibody on endothelial cell-cell junctions and lung metastasis. J Natl Cancer Inst 104(6):461–475.  https://doi.org/10.1093/jnci/djs009 PubMed PMID: 22343031; PMCID: PMC3309130CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Rigamonti N, De Palma M (2013) A role for angiopoietin-2 in organ-specific metastasis. Cell Rep. 4(4):621–623.  https://doi.org/10.1016/j.celrep.2013.07.034 PubMed PMID: 23993444CrossRefPubMedGoogle Scholar
  102. 102.
    Zheng W, Nurmi H, Appak S, Sabine A, Bovay E, Korhonen EA, Orsenigo F, Lohela M, D’Amico G, Holopainen T, Leow CC, Dejana E, Petrova TV, Augustin HG, Alitalo K (2014) Angiopoietin 2 regulates the transformation and integrity of lymphatic endothelial cell junctions. Genes Dev 28(14):1592–1603.  https://doi.org/10.1101/gad.237677.114 PubMed PMID: 25030698; PMCID: PMC4102766CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Le CT, Laidlaw G, Morehouse CA, Naiman B, Brohawn P, Mustelin T, Connor JR, McDonald DM (2015) Synergistic actions of blocking angiopoietin-2 and tumor necrosis factor-alpha in suppressing remodeling of blood vessels and lymphatics in airway inflammation. Am J Pathol 185(11):2949–2968.  https://doi.org/10.1016/j.ajpath.2015.07.010 PubMed PMID: 26348576; PMCID: PMC4630170CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Teichert M, Milde L, Holm A, Stanicek L, Gengenbacher N, Savant S, Ruckdeschel T, Hasanov Z, Srivastava K, Hu J, Hertel S, Bartol A, Schlereth K, Augustin HG (2017) Pericyte-expressed Tie2 controls angiogenesis and vessel maturation. Nat Commun. 8:16106.  https://doi.org/10.1038/ncomms16106 PubMed PMID: 28719590; PMCID: PMC5520106CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Benest AV, Kruse K, Savant S, Thomas M, Laib AM, Loos EK, Fiedler U, Augustin HG (2013) Angiopoietin-2 is critical for cytokine-induced vascular leakage. PLoS ONE 8(8):e70459.  https://doi.org/10.1371/journal.pone.0070459 PubMed PMID: 23940579; PMCID: PMC3734283CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Rigamonti N, Kadioglu E, Keklikoglou I, Wyser Rmili C, Leow CC, De Palma M (2014) Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade. Cell Rep. 8(3):696–706.  https://doi.org/10.1016/j.celrep.2014.06.059 PubMed PMID: 25088418CrossRefPubMedGoogle Scholar
  107. 107.
    Hakanpaa L, Sipila T, Leppanen VM, Gautam P, Nurmi H, Jacquemet G, Eklund L, Ivaska J, Alitalo K, Saharinen P (2015) Endothelial destabilization by angiopoietin-2 via integrin beta1 activation. Nat Commun. 6:5962.  https://doi.org/10.1038/ncomms6962 PubMed PMID: 25635707; PMCID: PMC4316742CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Kloepper J, Riedemann L, Amoozgar Z, Seano G, Susek K, Yu V, Dalvie N, Amelung RL, Datta M, Song JW, Askoxylakis V, Taylor JW, Lu-Emerson C, Batista A, Kirkpatrick ND, Jung K, Snuderl M, Muzikansky A, Stubenrauch KG, Krieter O, Wakimoto H, Xu L, Munn LL, Duda DG, Fukumura D, Batchelor TT, Jain RK (2016) Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci U S A. 113(16):4476–4481.  https://doi.org/10.1073/pnas.1525360113 PubMed PMID: 27044098; PMCID: PMC4843473CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Park JS, Kim IK, Han S, Park I, Kim C, Bae J, Oh SJ, Lee S, Kim JH, Woo DC, He Y, Augustin HG, Kim I, Lee D, Koh GY (2016) Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell 30(6):953–967.  https://doi.org/10.1016/j.ccell.2016.10.018 PubMed PMID: 27960088CrossRefPubMedGoogle Scholar
  110. 110.
    Wu FT, Man S, Xu P, Chow A, Paez-Ribes M, Lee CR, Pirie-Shepherd SR, Emmenegger U, Kerbel RS (2016) Efficacy of cotargeting angiopoietin-2 and the VEGF pathway in the adjuvant postsurgical setting for early breast, colorectal, and renal cancers. Cancer Res 76(23):6988–7000.  https://doi.org/10.1158/0008-5472.CAN-16-0888 PubMed PMID: 27651308; PMCID: PMC5633081CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Lund AW, Duraes FV, Hirosue S, Raghavan VR, Nembrini C, Thomas SN, Issa A, Hugues S, Swartz MA (2012) VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep. 1(3):191–199.  https://doi.org/10.1016/j.celrep.2012.01.005 PubMed PMID: 22832193CrossRefPubMedGoogle Scholar
  112. 112.
    Lund AW, Wagner M, Fankhauser M, Steinskog ES, Broggi MA, Spranger S, Gajewski TF, Alitalo K, Eikesdal HP, Wiig H, Swartz MA (2016) Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 126(9):3389–3402.  https://doi.org/10.1172/JCI79434 PubMed PMID: 27525437; PMCID: PMC5004967CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Fankhauser M, Broggi MAS, Potin L, Bordry N, Jeanbart L, Lund AW, Da Costa E, Hauert S, Rincon-Restrepo M, Tremblay C, Cabello E, Homicsko K, Michielin O, Hanahan D, Speiser DE, Swartz MA (2017) Tumor lymphangiogenesis promotes T cell infiltration and potentiates immunotherapy in melanoma. Sci Transl Med 9(407).  https://doi.org/10.1126/scitranslmed.aal4712. PubMed PMID: 28904226
  114. 114.
    Loo CP, Nelson NA, Lane RS, Booth JL, Loprinzi Hardin SC, Thomas A, Slifka MK, Nolz JC, Lund AW (2017) Lymphatic vessels balance viral dissemination and immune activation following cutaneous viral infection. Cell Rep. 20(13):3176–3187.  https://doi.org/10.1016/j.celrep.2017.09.006 PubMed PMID: 28954233; PMCID: PMC5621787CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Wrobel T, Dziegiel P, Mazur G, Zabel M, Kuliczkowski K, Szuba A (2005) LYVE-1 expression on high endothelial venules (HEVs) of lymph nodes. Lymphology 38(3):107–110 PubMed PMID: 16353487PubMedGoogle Scholar
  116. 116.
    Mumprecht V, Roudnicky F, Detmar M (2012) Inflammation-induced lymph node lymphangiogenesis is reversible. Am J Pathol 180(3):874–879.  https://doi.org/10.1016/j.ajpath.2011.11.010 PubMed PMID: 22200615; PMCID: PMC3349879CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Hara Y, Torii R, Ueda S, Kurimoto E, Ueda E, Okura H, Tatano Y, Yagi H, Ohno Y, Tanaka T, Masuko K, Masuko T (2018) Inhibition of tumor formation and metastasis by a monoclonal antibody against lymphatic vessel endothelial hyaluronan receptor 1. Cancer Sci 109(10):3171–3182.  https://doi.org/10.1111/cas.13755 PubMed PMID: 30058195; PMCID: PMC6172044CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Rubbia-Brandt L, Terris B, Giostra E, Dousset B, Morel P, Pepper MS (2004) Lymphatic vessel density and vascular endothelial growth factor-C expression correlate with malignant behavior in human pancreatic endocrine tumors. Clin Cancer Res 10(20):6919–6928.  https://doi.org/10.1158/1078-0432.CCR-04-0397 PubMed PMID: 15501970CrossRefPubMedGoogle Scholar
  119. 119.
    Ordonez NG (2006) Podoplanin: a novel diagnostic immunohistochemical marker. Adv Anat Pathol. 13(2):83–88.  https://doi.org/10.1097/01.pap.0000213007.48479.94 PubMed PMID: 16670463CrossRefPubMedGoogle Scholar
  120. 120.
    Adachi Y, Nakamura H, Kitamura Y, Taniguchi Y, Araki K, Shomori K, Horie Y, Kurozawa Y, Ito H, Hayashi K (2007) Lymphatic vessel density in pulmonary adenocarcinoma immunohistochemically evaluated with anti-podoplanin or anti-D2-40 antibody is correlated with lymphatic invasion or lymph node metastases. Pathol Int 57(4):171–177.  https://doi.org/10.1111/j.1440-1827.2007.02077.x PubMed PMID: 17316411CrossRefPubMedGoogle Scholar
  121. 121.
    Xu X, Gimotty PA, Guerry D, Karakousis G, Elder DE (2014) Lymphatic invasion as a prognostic biomarker in primary cutaneous melanoma. Methods Mol Biol 1102:275–286.  https://doi.org/10.1007/978-1-62703-727-3_15 PubMed PMID: 24258984; PMCID: PMC4918087CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Woon HG, Braun A, Li J, Smith C, Edwards J, Sierro F, Feng CG, Khanna R, Elliot M, Bell A, Hislop AD, Tangye SG, Rickinson AB, Gebhardt T, Britton WJ, Palendira U (2016) Compartmentalization of total and virus-specific tissue-resident memory CD8+ T cells in human lymphoid organs. PLoS Pathog 12(8):e1005799.  https://doi.org/10.1371/journal.ppat.1005799 PubMed PMID: 27540722; PMCID: PMC4991796CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Blanc C, Hans S, Tran T, Granier C, Saldman A, Anson M, Oudard S, Tartour E (2018) Targeting resident memory T cells for cancer immunotherapy. Front Immunol 9:1722.  https://doi.org/10.3389/fimmu.2018.01722 PubMed PMID: 30100906; PMCID: PMC6072845CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Corgnac S, Boutet M, Kfoury M, Naltet C, Mami-Chouaib F (2018) The emerging role of CD8(+) tissue resident memory T (TRM) cells in antitumor immunity: a unique functional contribution of the CD103 integrin. Front Immunol 9:1904.  https://doi.org/10.3389/fimmu.2018.01904. PubMed PMID: 30158938; PMCID: PMC6104123
  125. 125.
    Mami-Chouaib F, Blanc C, Corgnac S, Hans S, Malenica I, Granier C, Tihy I, Tartour E (2018) Resident memory T cells, critical components in tumor immunology. J Immunother Cancer. 6(1):87.  https://doi.org/10.1186/s40425-018-0399-6 PubMed PMID: 30180905; PMCID: PMC6122734CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Molodtsov A, Turk MJ (2018) Tissue resident CD8 memory T cell responses in cancer and autoimmunity. Front Immunol 9:2810.  https://doi.org/10.3389/fimmu.2018.02810 PubMed PMID: 30555481; PMCID: PMC6281983CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P, Thome JJ, Bickham KL, Lerner H, Goldstein M, Sykes M, Kato T, Farber DL (2013) Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38(1):187–197.  https://doi.org/10.1016/j.immuni.2012.09.020 PubMed PMID: 23260195; PMCID: PMC3557604CrossRefGoogle Scholar
  128. 128.
    Zens KD, Chen JK, Guyer RS, Wu FL, Cvetkovski F, Miron M, Farber DL (2017) Reduced generation of lung tissue-resident memory T cells during infancy. J Exp Med 214(10):2915–2932.  https://doi.org/10.1084/jem.20170521 PubMed PMID: 28855242; PMCID: PMC5626403CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Kumar BV, Kratchmarov R, Miron M, Carpenter DJ, Senda T, Lerner H, Friedman A, Reiner SL, Farber DL (2018) Functional heterogeneity of human tissue-resident memory T cells based on dye efflux capacities. JCI Insight 3(22).  https://doi.org/10.1172/jci.insight.123568. PubMed PMID: 30429372; PMCID: PMC6302950
  130. 130.
    Szabo PA, Miron M, Farber DL (2019) Location, location, location: tissue resident memory T cells in mice and humans. Sci Immunol 4(34).  https://doi.org/10.1126/sciimmunol.aas9673. PubMed PMID: 30952804
  131. 131.
    Baddoura FK, Nasr IW, Wrobel B, Li Q, Ruddle NH, Lakkis FG (2005) Lymphoid neogenesis in murine cardiac allografts undergoing chronic rejection. Am J Transplant 5(3):510–516.  https://doi.org/10.1111/j.1600-6143.2004.00714.x PubMed PMID: 15707405CrossRefPubMedGoogle Scholar
  132. 132.
    Nasr IW, Reel M, Oberbarnscheidt MH, Mounzer RH, Baddoura FK, Ruddle NH, Lakkis FG (2007) Tertiary lymphoid tissues generate effector and memory T cells that lead to allograft rejection. Am J Transplant 7(5):1071–1079.  https://doi.org/10.1111/j.1600-6143.2007.01756.x PubMed PMID: 17359505CrossRefPubMedGoogle Scholar
  133. 133.
    Motallebzadeh R, Bolton EM, Pettigrew GJ (2008) Lymphoid tissue formation in allografts: innocent until proven guilty. Transplantation 85(3):309–311.  https://doi.org/10.1097/TP.0b013e318162d2d0 PubMed PMID: 18301324CrossRefPubMedGoogle Scholar
  134. 134.
    Huibers MM, Gareau AJ, Vink A, Kruit R, Feringa H, Beerthuijzen JM, Siera-de Koning E, Peeters T, de Jonge N, de Weger RA, Lee TD (2015) The composition of ectopic lymphoid structures suggests involvement of a local immune response in cardiac allograft vasculopathy. J Heart Lung Transplant 34(5):734–745.  https://doi.org/10.1016/j.healun.2014.11.022 PubMed PMID: 25655346CrossRefPubMedGoogle Scholar
  135. 135.
    Koenig A, Thaunat O (2016) Lymphoid neogenesis and tertiary lymphoid organs in transplanted organs. Front Immunol 7:646.  https://doi.org/10.3389/fimmu.2016.00646 PubMed PMID: 28082981; PMCID: PMC5186756CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    de Leur K, Clahsen-van Groningen MC, van den Bosch TPP, de Graav GN, Hesselink DA, Samsom JN, Baan CC, Boer K (2018) Characterization of ectopic lymphoid structures in different types of acute renal allograft rejection. Clin Exp Immunol 192(2):224–232.  https://doi.org/10.1111/cei.13099 PubMed PMID: 29319177; PMCID: PMC5904712CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Noort AR, van Zoest KP, van Baarsen LG, Maracle CX, Helder B, Papazian N, Romera-Hernandez M, Tak PP, Cupedo T, Tas SW (2015) Tertiary lymphoid structures in rheumatoid arthritis: NF-kappaB-inducing kinase-positive endothelial cells as central players. Am J Pathol 185(7):1935–1943.  https://doi.org/10.1016/j.ajpath.2015.03.012 PubMed PMID: 25963989CrossRefPubMedGoogle Scholar
  138. 138.
    Rao DA (2018) T cells that help B cells in chronically inflamed tissues. Front Immunol 9:1924.  https://doi.org/10.3389/fimmu.2018.01924 PubMed PMID: 30190721; PMCID: PMC6115497CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Joshi NS, Akama-Garren EH, Lu Y, Lee DY, Chang GP, Li A, DuPage M, Tammela T, Kerper NR, Farago AF, Robbins R, Crowley DM, Bronson RT, Jacks T (2015) Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses. Immunity 43(3):579–590.  https://doi.org/10.1016/j.immuni.2015.08.006 PubMed PMID: 26341400; PMCID: PMC4826619CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Flajnik MF (2002) Comparative analyses of immunoglobulin genes: surprises and portents. Nat Rev Immunol 2(9):688–698.  https://doi.org/10.1038/nri889 PubMed PMID: 12209137CrossRefPubMedGoogle Scholar
  141. 141.
    Pancer Z, Cooper MD (2006) The evolution of adaptive immunity. Annu Rev Immunol 24:497–518.  https://doi.org/10.1146/annurev.immunol.24.021605.090542 PubMed PMID: 16551257CrossRefPubMedGoogle Scholar
  142. 142.
    Dzik JM (2010) The ancestry and cumulative evolution of immune reactions. Acta Biochim Pol 57(4):443–466 PubMed PMID: 21046016CrossRefGoogle Scholar
  143. 143.
    Ramsden DA, Weed BD, Reddy YV (2010) V(D)J recombination: born to be wild. Semin Cancer Biol 20(4):254–260.  https://doi.org/10.1016/j.semcancer.2010.06.002 PubMed PMID: 20600921; PMCID: PMC2942997CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Schrama D, Ritter C, Becker JC (2017) T cell receptor repertoire usage in cancer as a surrogate marker for immune responses. Semin Immunopathol 39(3):255–268.  https://doi.org/10.1007/s00281-016-0614-9 PubMed PMID: 28074285CrossRefPubMedGoogle Scholar
  145. 145.
    Nielsen SCA, Boyd SD (2018) Human adaptive immune receptor repertoire analysis-Past, present, and future. Immunol Rev 284(1):9–23.  https://doi.org/10.1111/imr.12667 PubMed PMID: 29944765CrossRefPubMedGoogle Scholar
  146. 146.
    Forrest MP, Zhang H, Moy W, McGowan H, Leites C, Dionisio LE, Xu Z, Shi J, Sanders AR, Greenleaf WJ, Cowan CA, Pang ZP, Gejman PV, Penzes P, Duan J (2017) Open chromatin profiling in hiPSC-derived neurons prioritizes functional noncoding psychiatric risk variants and highlights neurodevelopmental loci. Cell Stem Cell 21(3):305–318.  https://doi.org/10.1016/j.stem.2017.07.008. PubMed PMID: 28803920; PMCID: PMC5591074
  147. 147.
    Czimmerer Z, Horvath A, Daniel B, Nagy G, Cuaranta-Monroy I, Kiss M, Kolostyak Z, Poliska S, Steiner L, Giannakis N, Varga T, Nagy L (2018) Dynamic transcriptional control of macrophage miRNA signature via inflammation responsive enhancers revealed using a combination of next generation sequencing-based approaches. Biochim Biophys Acta Gene Regul Mech. 1861(1):14–28.  https://doi.org/10.1016/j.bbagrm.2017.11.003 PubMed PMID: 29133016CrossRefPubMedGoogle Scholar
  148. 148.
    Lawlor N, Marquez EJ, Orchard P, Narisu N, Shamim MS, Thibodeau A, Varshney A, Kursawe R, Erdos MR, Kanke M, Gu H, Pak E, Dutra A, Russell S, Li X, Piecuch E, Luo O, Chines PS, Fuchbserger C, Center NIHIS, Sethupathy P, Aiden AP, Ruan Y, Aiden EL, Collins FS, Ucar D, Parker SCJ, Stitzel ML (2018) Multiomic profiling identifies cis-regulatory networks underlying human pancreatic beta cell identity and function. Cell Rep 26(3):788–801.  https://doi.org/10.1016/j.celrep.2018.12.083. PubMed PMID: 30650367; PMCID: PMC6389269
  149. 149.
    Yancopoulos GD, Blackwell TK, Suh H, Hood L, Alt FW (1986) Introduced T cell receptor variable region gene segments recombine in pre-B cells: evidence that B and T cells use a common recombinase. Cell 44(2):251–259 PubMed PMID: 3484682CrossRefGoogle Scholar
  150. 150.
    Fuxa M, Skok JA (2007) Transcriptional regulation in early B cell development. Curr Opin Immunol 19(2):129–136.  https://doi.org/10.1016/j.coi.2007.02.002 PubMed PMID: 17292598CrossRefPubMedGoogle Scholar
  151. 151.
    Singh H, Manuri PR, Olivares S, Dara N, Dawson MJ, Huls H, Hackett PB, Kohn DB, Shpall EJ, Champlin RE, Cooper LJ (2008) Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system. Cancer Res 68(8):2961–2971.  https://doi.org/10.1158/0008-5472.CAN-07-5600 PubMed PMID: 18413766; PMCID: PMC2424272CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Minagawa A, Yoshikawa T, Yasukawa M, Hotta A, Kunitomo M, Iriguchi S, Takiguchi M, Kassai Y, Imai E, Yasui Y, Kawai Y, Zhang R, Uemura Y, Miyoshi H, Nakanishi M, Watanabe A, Hayashi A, Kawana K, Fujii T, Nakatsura T, Kaneko S (2018) Enhancing T cell receptor stability in rejuvenated iPSC-derived T cells improves their use in cancer immunotherapy. Cell Stem Cell 23(6):850–858.  https://doi.org/10.1016/j.stem.2018.10.005. PubMed PMID: 30449714
  153. 153.
    Malissen M, Trucy J, Letourneur F, Rebai N, Dunn DE, Fitch FW, Hood L, Malissen B (1988) A T cell clone expresses two T cell receptor alpha genes but uses one alpha beta heterodimer for allorecognition and self MHC-restricted antigen recognition. Cell 55(1):49–59 PubMed PMID: 3262424CrossRefGoogle Scholar
  154. 154.
    Padovan E, Casorati G, Dellabona P, Meyer S, Brockhaus M, Lanzavecchia A (1993) Expression of two T cell receptor alpha chains: dual receptor T cells. Science 262(5132):422–424 PubMed PMID: 8211163CrossRefGoogle Scholar
  155. 155.
    Mason D (1994) Allelic exclusion of alpha chains in TCRs. Int Immunol 6(6):881–885.  https://doi.org/10.1093/intimm/6.6.881 PubMed PMID: 8086376CrossRefPubMedGoogle Scholar
  156. 156.
    Davodeau F, Peyrat MA, Romagne F, Necker A, Hallet MM, Vie H, Bonneville M (1995) Dual T cell receptor beta chain expression on human T lymphocytes. J Exp Med 181(4):1391–1398.  https://doi.org/10.1084/jem.181.4.1391 PubMed PMID: 7699325; PMCID: PMC2191978CrossRefPubMedGoogle Scholar
  157. 157.
    Heath WR, Carbone FR, Bertolino P, Kelly J, Cose S, Miller JF (1995) Expression of two T cell receptor alpha chains on the surface of normal murine T cells. Eur J Immunol 25(6):1617–1623.  https://doi.org/10.1002/eji.1830250622 PubMed PMID: 7614990CrossRefPubMedGoogle Scholar
  158. 158.
    Corthay A, Nandakumar KS, Holmdahl R (2001) Evaluation of the percentage of peripheral T cells with two different T cell receptor alpha-chains and of their potential role in autoimmunity. J Autoimmun 16(4):423–429.  https://doi.org/10.1006/jaut.2001.0504 PubMed PMID: 11437490CrossRefPubMedGoogle Scholar
  159. 159.
    Gavin MA, Rudensky AY (2002) Dual TCR T cells: gaining entry into the periphery. Nat Immunol 3(2):109–110.  https://doi.org/10.1038/ni0202-109 PubMed PMID: 11812982CrossRefPubMedGoogle Scholar
  160. 160.
    Taupin JL, Halary F, Dechanet J, Peyrat MA, Ragnaud JM, Bonneville M, Moreau JF (1999) An enlarged subpopulation of T lymphocytes bearing two distinct gammadelta TCR in an HIV-positive patient. Int Immunol 11(4):545–552.  https://doi.org/10.1093/intimm/11.4.545 PubMed PMID: 10323207CrossRefPubMedGoogle Scholar
  161. 161.
    Dabiri S, Morales A, Ma L, Sundram U, Kim YH, Arber DA, Kim J (2011) The frequency of dual TCR-PCR clonality in granulomatous disorders. J Cutan Pathol 38(9):704–749.  https://doi.org/10.1111/j.1600-0560.2011.01727.x PubMed PMID: 21645036CrossRefPubMedGoogle Scholar
  162. 162.
    Magurran AE, Henderson PA (2003) Explaining the excess of rare species in natural species abundance distributions. Nature 422(6933):714–716.  https://doi.org/10.1038/nature01547 PubMed PMID: 12700760CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.HudsonAlpha Institute for BiotechnologyHuntsvilleUSA
  2. 2.University of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations