Advertisement

Functional In Vivo Imaging of Tumors

  • Mohammad HarisEmail author
  • Sabah Nisar
  • Sheema Hashem
  • Ajaz A. Bhat
  • Santosh Yadav
  • Muralitharan Shanmugakonar
  • Hamda Al-Naemi
  • Puneet Bagga
  • Shahab Uddin
  • Ravinder Reddy
Chapter
Part of the Cancer Treatment and Research book series (CTAR, volume 180)

Abstract

Noninvasive imaging of functional and molecular changes in cancer has become an indispensable tool for studying cancer in vivo. Targeting the functional and molecular changes in cancer imaging provides a platform for the in vivo analysis of the mechanisms such as gene expression, signal transduction, biochemical reactions, regulatory pathways, cell trafficking, and drug action underlying cancer noninvasively. The main focus of imaging in cancer is the development of new contrast methods/molecular probes for the early diagnosis and the precise evaluation of therapy response. In clinical setup, imaging modalities facilitate screening, prediction, staging, biopsy and therapy guidance, therapy response, therapy planning, and prognosis of cancer. In this book chapter, we review different established and emerging in vivo imaging modalities and their applications in monitoring functional, molecular, and metabolic changes in cancer.

Keywords

Biomedical imaging Optical imaging Positron emission tomography Magnetic resonance imaging Magnetic resonance spectroscopy Hyperpolarization Chemical exchange saturation transfer 

References

  1. 1.
    Abdel Razek AAK, Poptani H (2013) MR spectrsocopy of head and neck cancer. Eur J Radiol 82(6):982–989.  https://doi.org/10.1016/j.ejrad.2013.01.025CrossRefPubMedGoogle Scholar
  2. 2.
    Agnes RS, Broome A-M, Wang J, Verma A, Lavik K, Basilion JP (2012) An optical probe for noninvasive molecular imaging of orthotopic brain tumors overexpressing epidermal growth factor receptor. Mol Cancer Ther 11(10):2202–2211.  https://doi.org/10.1158/1535-7163.mct-12-0211CrossRefPubMedGoogle Scholar
  3. 3.
    Aide N, Kinross K, Cullinane C, Roselt P, Waldeck K, Neels O, Hicks RJ (2010) 18F-FLT PET as a surrogate marker of drug efficacy during mTOR inhibition by everolimus in a preclinical cisplatin-resistant ovarian tumor model. J Nucl Med 51(10):1559–1564.  https://doi.org/10.2967/jnumed.109.073288CrossRefPubMedGoogle Scholar
  4. 4.
    Albers MJ, Bok R, Chen AP, Cunningham CH, Zierhut ML, Zhang VY, Kurhanewicz J (2008) Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Can Res 68(20):8607–8615.  https://doi.org/10.1158/0008-5472.can-08-0749CrossRefGoogle Scholar
  5. 5.
    Albers MJ, Krieger MD, Gonzalez-Gomez I, Gilles FH, McComb JG, Nelson MD, Blüml S (2004) Proton-decoupled 31P MRS in untreated pediatric brain tumors. Magn Reson Med 53(1):22–29.  https://doi.org/10.1002/mrm.20312CrossRefGoogle Scholar
  6. 6.
    Alfke H, Stöppler H, Nocken F, Heverhagen JT, Kleb B, Czubayko F, Klose KJ (2003) In vitro MR imaging of regulated gene expression. Radiology 228(2):488–492.  https://doi.org/10.1148/radiol.2282012006CrossRefPubMedGoogle Scholar
  7. 7.
    Arena F, Singh JB, Gianolio E, Stefanìa R, Aime S (2011) β-gal gene expression MRI reporter in melanoma tumor cells. Design, synthesis, and in vitro and in vivo testing of a Gd(III) containing probe forming a high relaxivity, melanin-like structure upon β-gal enzymatic activation. Bioconjug Chem 22(12):2625–2635.  https://doi.org/10.1021/bc200486j
  8. 8.
    Arosio P, Levi S (2002) Ferritin, iron homeostasis, and oxidative damage1, 21Guest Editor: Mario Comporti2This article is part of a series of reviews on “Iron and Cellular Redox Status.” The full list of papers may be found on the homepage of the journal. Free Radical Biol Med 33(4):457–463. doi: https://doi.org/10.1016/S0891-5849(02)00842-0
  9. 9.
    Artemov D, Mori N, Ravi R, Bhujwalla ZM (2003) Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res 63(11):2723Google Scholar
  10. 10.
    Bading JR, Shields AF (2008) Imaging of cell proliferation: status and prospects. J Nucl Med 49(Suppl 2):64S–80S.  https://doi.org/10.2967/jnumed.107.046391CrossRefPubMedGoogle Scholar
  11. 11.
    Baek HM, Chen JH, Nalcioglu O, Su MY (2008) Proton MR spectroscopy for monitoring early treatment response of breast cancer to neo-adjuvant chemotherapy. Ann Oncol Official J Eur Soc Med Oncol 19(5):1022–1024.  https://doi.org/10.1093/annonc/mdn121CrossRefGoogle Scholar
  12. 12.
    Bagga P, Crescenzi R, Krishnamoorthy G, Verma G, Nanga RPR, Reddy D, Reddy R (2016) Mapping the alterations in glutamate with GluCEST MRI in a mouse model of dopamine deficiency. J Neurochem 139(3):432–439.  https://doi.org/10.1111/jnc.13771CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bagga P, Haris M, D’Aquilla K, Wilson NE, Marincola FM, Schnall MD, Reddy R (2017) Non-caloric sweetener provides magnetic resonance imaging contrast for cancer detection. J Transl Med 15(1):119–119.  https://doi.org/10.1186/s12967-017-1221-9CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bai Y, Lin Y, Zhang W, Kong L, Wang L, Zuo P, Wang M (2016) Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas. Oncotarget 8(4):5834–5842.  https://doi.org/10.18632/oncotarget.13970
  15. 15.
    Bar-Shalom R, Valdivia AY, Blaufox MD (2000) PET imaging in oncology. Semin Nucl Med 30(3):150–185.  https://doi.org/10.1053/snuc.2000.7439CrossRefPubMedGoogle Scholar
  16. 16.
    Barentsz J, Berger-Hartog O, Witjes J, Hulsbergen-van der Kaa C, Oosterhof GON, Vanderlaak JAWM, Kondacki H, Ruijs SHJ (1998) Evaluation of chemotherapy in advanced urinary bladder cancer with fast dynamic contrast-enhanced MR imaging. Radiology 207:791–797Google Scholar
  17. 17.
    Barker PB (2014) Diagnosis and characterization of brain tumors: MR spectroscopic imaging. In: Pillai JJ (ed) Functional brain tumor imaging. Springer, New York, New York, NY, pp 39–55CrossRefGoogle Scholar
  18. 18.
    Becherer A, Karanikas G, Szabó M, Zettinig G, Asenbaum S, Marosi C, Kletter K (2003) Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging 30(11):1561–1567.  https://doi.org/10.1007/s00259-003-1259-1CrossRefPubMedGoogle Scholar
  19. 19.
    Beer AJ, Kessler H, Wester H-J, Schwaiger M (2011) PET imaging of integrin αVβ3 expression. Theranostics 1:48–57PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Beloueche-Babari M, Jamin Y, Arunan V, Walker-Samuel S, Revill M, Smith PD, Robinson SP (2013) Acute tumour response to the MEK1/2 inhibitor selumetinib (AZD6244, ARRY-142886) evaluated by non-invasive diffusion-weighted MRI. Br J Cancer 109(6):1562–1569.  https://doi.org/10.1038/bjc.2013.456CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bensch F, van der Veen E, Jorritsma A, Lub-de Hooge M, Boellaard R, Oosting S, Schröder C, Hiltermann J, de Vries E (2017) Abstract CT017: first-in-human PET imaging with the PD-L1 antibody 89 Zr-atezolizumab, vol 77Google Scholar
  22. 22.
    Bitencourt AGV, Andrade WP, da Cunha RR, Conrado JLFdA, Lima ENP, Barbosa PNVP, Chojniak R (2017) Detection of distant metastases in patients with locally advanced breast cancer: role of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography and conventional imaging with computed tomography scans. Radiologia brasileira 50(4):211–215.  https://doi.org/10.1590/0100-3984.2015-0232
  23. 23.
    Brandão LA, Castillo M (2016) Adult brain tumors. Mag Reson Imaging Clin 24(4):781–809.  https://doi.org/10.1016/j.mric.2016.07.005CrossRefGoogle Scholar
  24. 24.
    Bremer C, Ntziachristos V, Weissleder R (2003) Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol 13(2):231–243.  https://doi.org/10.1007/s00330-002-1610-0CrossRefPubMedGoogle Scholar
  25. 25.
    Bremer C, Tung C-H, Bogdanov A, Weissleder R (2002) Imaging of differential protease expression in breast cancers for detection of aggressive tumor phenotypes. Radiology 222(3):814–818.  https://doi.org/10.1148/radiol.2223010812CrossRefPubMedGoogle Scholar
  26. 26.
    Bremer C, Tung C-H, Weissleder R (2001) In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 7:743.  https://doi.org/10.1038/89126CrossRefPubMedGoogle Scholar
  27. 27.
    Bulik M, Jancalek R, Vanicek J, Skoch A, Mechl M (2013) Potential of MR spectroscopy for assessment of glioma grading. Clin Neurol Neurosurg 115(2):146–153.  https://doi.org/10.1016/j.clineuro.2012.11.002CrossRefPubMedGoogle Scholar
  28. 28.
    Burns JS, Manda G (2017) Metabolic pathways of the warburg effect in health and disease: perspectives of choice, chain or chance. Int J Mol Sci 18(12):2755.  https://doi.org/10.3390/ijms18122755CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Singer OC, Humpich MC, Fiehler J, Albers GW, Lansberg MG, Kastrup A, Rovira A, Liebeskind DS, Gass A, Rosso C, Derex L, Neumann-Haefelin T (2008) Risk for symptomatic intracerebral hemorrhage after thrombolysis assessed by diffusion-weighted magnetic resonance imaging. Ann Neurol 63:52–60Google Scholar
  30. 30.
    Cai K, Tain R-W, Zhou XJ, Damen FC, Scotti AM, Hariharan H, Reddy R (2017) Creatine CEST MRI for differentiating gliomas with different degrees of aggressiveness. Mol Imaging Biol 19(2):225–232.  https://doi.org/10.1007/s11307-016-0995-0CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85.  https://doi.org/10.1038/nrc2981CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Canese R, Pisanu ME, Mezzanzanica D, Ricci A, Paris L, Bagnoli M, Iorio E (2012) Characterisation of in vivo ovarian cancer models by quantitative 1H magnetic resonance spectroscopy and diffusion-weighted imaging. NMR Biomed 25(4):632–642.  https://doi.org/10.1002/nbm.1779CrossRefPubMedGoogle Scholar
  33. 33.
    Castillo M, Smith JK, Kwock L (2000) Correlation of Myo-inositol levels and grading of cerebral astrocytomas. Am J Neuroradiol 21(9):1645PubMedGoogle Scholar
  34. 34.
    Challapalli A, Aboagye EO (2016) Positron emission tomography imaging of tumor cell metabolism and application to therapy response monitoring. Front Oncol 6:44–44.  https://doi.org/10.3389/fonc.2016.00044CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Chan KWY, McMahon MT, Kato Y, Liu G, Bulte JWM, Bhujwalla ZM, van Zijl PCM (2012) Natural d-glucose as a biodegradable MRI contrast agent for detecting cancer. Magn Reson Med 68(6):1764–1773.  https://doi.org/10.1002/mrm.24520CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Chaumeil MM, Larson PEZ, Woods SM, Cai L, Eriksson P, Robinson AE, Ronen SM (2014) Hyperpolarized [1-13C] glutamate: a metabolic imaging biomarker of IDH1 mutational status in glioma. Can Res 74(16):4247–4257.  https://doi.org/10.1158/0008-5472.can-14-0680CrossRefGoogle Scholar
  37. 37.
    Chen H-Y, Larson PEZ, Bok RA, von Morze C, Sriram R, Delos Santos R, Vigneron DB (2017) Assessing prostate cancer aggressiveness with hyperpolarized dual-agent 3D dynamic imaging of metabolism and perfusion. Can Res 77(12):3207–3216.  https://doi.org/10.1158/0008-5472.can-16-2083CrossRefGoogle Scholar
  38. 38.
    Chen L, Liu M, Bao J, Xia Y, Zhang J, Zhang L, Wang J (2013) The correlation between apparent diffusion coefficient and tumor cellularity in patients: a meta-analysis. PLoS ONE 8(11):e79008–e79008.  https://doi.org/10.1371/journal.pone.0079008CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Chen LQ, Howison CM, Jeffery JJ, Robey IF, Kuo PH, Pagel MD (2014) Evaluations of extracellular pH within in vivo tumors using acidoCEST MRI. Magn Reson Med 72(5):1408–1417.  https://doi.org/10.1002/mrm.25053CrossRefPubMedGoogle Scholar
  40. 40.
    Chen LQ, Randtke EA, Jones KM, Moon BF, Howison CM, Pagel MD (2015) Evaluations of tumor acidosis within in vivo tumor models using parametric maps generated with Acido CEST MRI. Mol Imaging Biol 17(4):488–496.  https://doi.org/10.1007/s11307-014-0816-2CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chen M, Chen C, Shen Z, Zhang X, Chen Y, Lin F, Ma X, Zhuang C, Mao Y, Gan H, Chen P, Wu R (2017) Extracellular pH is a biomarker enabling detection of breast cancer and liver cancer using CEST MRI. Oncotarget 8(28):45759–45767.  https://doi.org/10.18632/oncotarget.17404
  42. 42.
    Chenevert TL, Brunberg JA, Pipe JG (1990) Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology 177(2):401–405.  https://doi.org/10.1148/radiology.177.2.2217776CrossRefPubMedGoogle Scholar
  43. 43.
    Cho A, Lau JYC, Geraghty BJ, Cunningham CH, Keshari KR (2017) Noninvasive interrogation of cancer metabolism with hyperpolarized 13C MRI. J Nucl Med 58(8):1201–1206.  https://doi.org/10.2967/jnumed.116.182170CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cohen B, Dafni H, Meir G, Harmelin A, Neeman M (2005) Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia (New York, N.Y.) 7(2):109–117.  https://doi.org/10.1593/neo.04436
  45. 45.
    Cozzi A, Corsi B, Levi S, Santambrogio P, Albertini A, Arosio P (2000) Overexpression of wild type and mutated human ferritin H-chain in HeLa cells. J Biol Chem 275(33):25122–25129.  https://doi.org/10.1074/jbc.m003797200CrossRefPubMedGoogle Scholar
  46. 46.
    Day SE, Kettunen MI, Gallagher FA, Hu DE, Lerche M, Wolber J, Brindle KM (2007) Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 13:1382.  https://doi.org/10.1038/nm1650
  47. 47.
    DeBrosse C, Nanga RPR, Bagga P, Nath K, Haris M, Marincola F, Reddy R (2016) Erratum: lactate chemical exchange saturation transfer (LATEST) imaging in vivo: a biomarker for LDH activity. Sci Rep 6:21813–21813.  https://doi.org/10.1038/srep21813
  48. 48.
    DeBrosse C, Nanga RPR, Bagga P, Nath K, Haris M, Marincola F, Reddy R (2016) Lactate chemical exchange saturation transfer (LATEST) imaging in vivo a biomarker for LDH activity. Sci Rep 6:19517–19517.  https://doi.org/10.1038/srep19517CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    DeVries AF, Griebel J, Kremser C, Judmaier W, Gneiting T, Kreczy A, Lukas P (2001) Tumor microcirculation evaluated by dynamic magnetic resonance imaging predicts therapy outcome for primary rectal carcinoma. Can Res 61(6):2513Google Scholar
  50. 50.
    Dijkhoff RAP, Beets-Tan RGH, Lambregts DMJ, Beets GL, Maas M (2017) Value of DCE-MRI for staging and response evaluation in rectal cancer: a systematic review. Eur J Radiol 95:155–168.  https://doi.org/10.1016/j.ejrad.2017.08.009CrossRefPubMedGoogle Scholar
  51. 51.
    Du W, Wang Y, Luo Q, Liu B-F (2006) Optical molecular imaging for systems biology: from molecule to organism. Anal Bioanal Chem 386(3):444–457.  https://doi.org/10.1007/s00216-006-0541-zCrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Duan C, Perez-Torres CJ, Yuan L, Engelbach JA, Beeman SC, Tsien CI, Garbow JR (2017) Can anti-vascular endothelial growth factor antibody reverse radiation necrosis? A preclinical investigation. J Neuro-Oncol 133(1):9–16.  https://doi.org/10.1007/s11060-017-2410-3CrossRefGoogle Scholar
  53. 53.
    Dubey P, Su H, Adonai N, Du S, Rosato A, Braun J, Witte ON (2003) Quantitative imaging of the T cell antitumor response by positron-emission tomography. Proc Natl Acad Sci 100(3):1232.  https://doi.org/10.1073/pnas.0337418100CrossRefPubMedGoogle Scholar
  54. 54.
    Edinger M, Sweeney TJ, Tucker AA, Olomu AB, Negrin RS, Contag CH (1999) Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia (New York, N.Y.) 1(4):303–310Google Scholar
  55. 55.
    Essig M, Waschkies M, Wenz F, Debus J, Hentrich HR, Knopp MV (2003) Assessment of brain metastases with dynamic susceptibility-weighted contrast-enhanced MR imaging: initial results. Radiology 228(1):193–199.  https://doi.org/10.1148/radiol.2281020298CrossRefPubMedGoogle Scholar
  56. 56.
    Evangelista L, Zattoni F, Guttilla A, Saladini G, Zattoni F, Colletti PM, Rubello D (2013) Choline PET or PET/CT and biochemical relapse of prostate cancer: a systematic review and meta-analysis. Clin Nucl Med 38(5):305–314.  https://doi.org/10.1097/rlu.0b013e3182867f3cCrossRefPubMedGoogle Scholar
  57. 57.
    Farwell MD, Pryma DA, Mankoff DA (2014) PET/CT imaging in cancer: current applications and future directions. Cancer 120(22):3433–3445.  https://doi.org/10.1002/cncr.28860CrossRefPubMedGoogle Scholar
  58. 58.
    Feng Y, Liu Q, Zhu J, Xie F, Li L (2012) Efficiency of ferritin as an MRI reporter gene in NPC cells is enhanced by iron supplementation. J Biomed Biotechnol 2012:434878–434878.  https://doi.org/10.1155/2012/434878CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Fennessy FM, McKay RR, Beard CJ, Taplin M-E, Tempany CM (2014) Dynamic contrast-enhanced magnetic resonance imaging in prostate cancer clinical trials: potential roles and possible pitfalls. Transl Oncol 7(1):120–129PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Fowler JS, Volkow ND, Wang G-J, Ding Y-S, Dewey SL (1999) PET and drug research and development. J Nucl Med 40(7):1154–1163PubMedGoogle Scholar
  61. 61.
    Friedman KP, Wahl RL (2004) Clinical use of positron emission tomography in the management of cutaneous melanoma. Semin Nucl Med 34(4):242–253.  https://doi.org/10.1053/j.semnuclmed.2004.06.001CrossRefPubMedGoogle Scholar
  62. 62.
    Fueger BJ, Czernin J, Cloughesy T, Silverman DH, Geist CL, Walter MA, Chen W (2010) Correlation of 6-18F-Fluoro-l-Dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas. J Nucl Med 51(10):1532–1538.  https://doi.org/10.2967/jnumed.110.078592CrossRefPubMedGoogle Scholar
  63. 63.
    Fuss M, Wenz F, Essig M, Muenter M, Debus J, Herman TS, Wannenmacher M (2001) Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast-enhanced MRI (DSC-MRI) is predictive of local tumor control after radiation therapy. Int J Radiat Oncol Biol Phys 51(2):478–482. doi: https://doi.org/10.1016/S0360-3016(01)01691-1
  64. 64.
    Gallagher FA, Kettunen MI, Day SE, Hu D-E, Ardenkjær-Larsen JH, Zandt R, Jensen PR, Karlsson M, Golman K, Lerche MH, Brindle KM (2008) Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453:940.  https://doi.org/10.1038/nature07017
  65. 65.
    García-Figueiras R, Baleato-González S, Padhani AR, Oleaga L, Vilanova JC, Luna A, Cobas Gómez JC (2016) Proton magnetic resonance spectroscopy in oncology: the fingerprints of cancer? Diagn Interv Radiol (Ankara, Turkey) 22(1):75–89.  https://doi.org/10.5152/dir.2015.15009CrossRefGoogle Scholar
  66. 66.
    Gee MS, Upadhyay R, Bergquist H, Alencar H, Reynolds F, Maricevich M, Mahmood U (2008) Human breast cancer tumor models: molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy. Radiology 248(3):925–935.  https://doi.org/10.1148/radiol.2482071496CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Gerweck LE, Seetharaman K (1996) Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Can Res 56(6):1194Google Scholar
  68. 68.
    Gilad AA, McMahon MT, Walczak P, Winnard Jr PT, Raman V, van Laarhoven HWM, van Zijl PC M (2007) Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol 25:217.  https://doi.org/10.1038/nbt1277
  69. 69.
    Gilad AA, Winnard PT, van Zijl PCM, Bulte JWM (2007) Developing MR reporter genes: promises and pitfalls. NMR Biomed 20(3):275–290.  https://doi.org/10.1002/nbm.1134
  70. 70.
    Gilad AA, Ziv K, McMahon MT, van Zijl PCM, Neeman M, Bulte JWM (2008) MRI reporter genes. J Nucl Med 49(12):1905–1908.  https://doi.org/10.2967/jnumed.108.053520
  71. 71.
    Gillies RJ, Liu Z, Bhujwalla Z (1994) 31P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate. Am J Physiol-Cell Physiol 267(1):C195–C203.  https://doi.org/10.1152/ajpcell.1994.267.1.c195CrossRefGoogle Scholar
  72. 72.
    Glunde K, Artemov D, Penet M-F, Jacobs MA, Bhujwalla ZM (2010) Magnetic resonance spectroscopy in metabolic and molecular imaging and diagnosis of cancer. Chem Rev 110(5):3043–3059.  https://doi.org/10.1021/cr9004007CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Glunde K, Bhujwalla ZM (2011) Metabolic tumor imaging using magnetic resonance spectroscopy. Semin Oncol 38(1):26–41.  https://doi.org/10.1053/j.seminoncol.2010.11.001CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Gong H, Kovar J, Little G, Chen H, Olive DM (2010) In vivo imaging of xenograft tumors using an epidermal growth factor receptor-specific affibody molecule labeled with a near-infrared fluorophore. Neoplasia (New York, N.Y.) 12(2):139–149Google Scholar
  75. 75.
    Griffeth LK (2005) Use of PET/CT scanning in cancer patients: technical and practical considerations. Proceedings (Baylor University. Medical Center) 18(4):321–330Google Scholar
  76. 76.
    Griffiths JR, Tate AR, Howe FA, Stubbs M (2002) Magnetic Resonance Spectroscopy of cancer—practicalities of multi-centre trials and early results in non-Hodgkin’s lymphoma. Eur J Cancer 38(16):2085–2093.  https://doi.org/10.1016/s0959-8049(02)00389-1CrossRefPubMedGoogle Scholar
  77. 77.
    Guo Y, Cai Y-Q, Cai Z-L, Gao Y-G, An N-Y, Ma L, Gao J-H (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 16(2):172–178.  https://doi.org/10.1002/jmri.10140CrossRefPubMedGoogle Scholar
  78. 78.
    Gutte H, Hansen AE, Johannesen HH, Clemmensen AE, Ardenkjær-Larsen JH, Nielsen CH, Kjær A (2015) The use of dynamic nuclear polarization (13)C-pyruvate MRS in cancer. Am J Nucl Med Mol Imaging 5(5):548–560PubMedPubMedCentralGoogle Scholar
  79. 79.
    Hamakawa H, Murashita JUN, Yamada N, Inubushi T, Kato N, Kato T (2004) Reduced intracellular pH in the basal ganglia and whole brain measured by 31P-MRS in bipolar disorder. Psychiatry Clin Neurosci 58(1):82–88.  https://doi.org/10.1111/j.1440-1819.2004.01197.xCrossRefPubMedGoogle Scholar
  80. 80.
    Hara T, Kosaka N, Kishi H (2002) Development of 18F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med 43(2):187–199PubMedGoogle Scholar
  81. 81.
    Haris M, Nanga RPR, Singh A, Cai K, Kogan F, Hariharan H, Reddy R (2012) Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI. NMR Biomed 25(11):1305–1309.  https://doi.org/10.1002/nbm.2792CrossRefPubMedGoogle Scholar
  82. 82.
    Haris M, Singh A, Cai K, Kogan F, McGarvey J, Debrosse C, Reddy R (2014) A technique for in vivo mapping of myocardial creatine kinase metabolism. Nat Med 20(2):209–214.  https://doi.org/10.1038/nm.3436CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Haris M, Singh A, Mohammed I, Ittyerah R, Nath K, Nanga RPR, Reddy R (2014) In vivo magnetic resonance imaging of tumor protease activity. Sci Rep 4:6081.  https://doi.org/10.1038/srep06081CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Haris M, Yadav SK, Rizwan A, Singh A, Wang E, Hariharan H, Marincola FM (2015) Molecular magnetic resonance imaging in cancer. J Transl Med 13(1):313.  https://doi.org/10.1186/s12967-015-0659-xCrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Hassan M, Chernomordik V, Zielinski R, Ardeshirpour Y, Capala J, Gandjbakhche A (2012) In vivo method to monitor changes in HER2 expression using near-infrared fluorescence imaging. Mol Imaging 11(3):177–186PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    He X, Gao J, Gambhir SS, Cheng Z (2010) Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges. Trends Mol Med 16(12):574–583.  https://doi.org/10.1016/j.molmed.2010.08.006CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Helfer BM, Balducci A, Nelson AD, Janjic JM, Gil RR, Kalinski P, Mailliard RB (2010) Functional assessment of human dendritic cells labeled for in vivo (19)F magnetic resonance imaging cell tracking. Cytotherapy 12(2):238–250.  https://doi.org/10.3109/14653240903446902CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Henry RG, Vigneron DB, Fischbein NJ, Grant PE, Day MR, Noworolski SM, Nelson SJ (2000) Comparison of relative cerebral blood volume and proton spectroscopy in patients with treated gliomas. Am J Neuroradiol 21(2):357PubMedGoogle Scholar
  89. 89.
    Herrmann K, Ott K, Buck AK, Lordick F, Wilhelm D, Souvatzoglou M, Krause BJ (2007) Imaging gastric cancer with PET and the radiotracers 18F-FLT and 18F-FDG: a comparative analysis. J Nucl Med 48(12):1945–1950.  https://doi.org/10.2967/jnumed.107.044867CrossRefPubMedGoogle Scholar
  90. 90.
    Heskamp S, Hobo W, Molkenboer-Kuenen JDM, Olive D, Oyen WJG, Dolstra H, Boerman OC (2015) Noninvasive imaging of tumor PD-L1 expression using radiolabeled anti–PD-L1 antibodies. Can Res 75(14):2928.  https://doi.org/10.1158/0008-5472.can-14-3477CrossRefGoogle Scholar
  91. 91.
    Hettich M, Braun F, Bartholomä MD, Schirmbeck R, Niedermann G (2016) High-resolution PET imaging with therapeutic antibody-based PD-1/PD-L1 checkpoint tracers. Theranostics 6(10):1629–1640.  https://doi.org/10.7150/thno.15253CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Hicks RJ, Hofman MS (2012) Is there still a role for SPECT–CT in oncology in the PET–CT era? Nat Rev Clin Oncol 9:712.  https://doi.org/10.1038/nrclinonc.2012.188CrossRefPubMedGoogle Scholar
  93. 93.
    Higashikawa K, Yagi K, Watanabe K, Kamino S, Ueda M, Hiromura M, Enomoto S (2014) 64Cu-DOTA-Anti-CTLA-4 mAb enabled PET visualization of CTLA-4 on the T-cell infiltrating tumor tissues. PLoS ONE 9(11):e109866.  https://doi.org/10.1371/journal.pone.0109866CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Hill DK, Kim E, Teruel JR, Jamin Y, Widerøe M, Søgaard CD, Moestue SA (2016) Diffusion-weighted MRI for early detection and characterization of prostate cancer in the transgenic adenocarcinoma of the mouse prostate model. J Magn Reson Imaging 43(5):1207–1217.  https://doi.org/10.1002/jmri.25087CrossRefPubMedGoogle Scholar
  95. 95.
    Hobbs SK, Shi G, Homer R, Harsh G, Atlas SW, Bednarski MD (2003) Magnetic resonance image–guided proteomics of human glioblastoma multiforme. J Magn Reson Imaging 18(5):530–536.  https://doi.org/10.1002/jmri.10395CrossRefPubMedGoogle Scholar
  96. 96.
    Horská A, Barker PB (2010) Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am 20(3):293–310.  https://doi.org/10.1016/j.nic.2010.04.003CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Hoskin PJ, Saunders MI, Goodchild K, Powell ME, Taylor NJ, Baddeley H (1999) Dynamic contrast enhanced magnetic resonance scanning as a predictor of response to accelerated radiotherapy for advanced head and neck cancer. Br J Radiol 72(863):1093–1098.  https://doi.org/10.1259/bjr.72.863.10700827CrossRefPubMedGoogle Scholar
  98. 98.
    Howe FA, Barton SJ, Cudlip SA, Stubbs M, Saunders DE, Murphy M, Griffiths JR (2003) Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 49(2):223–232.  https://doi.org/10.1002/mrm.10367CrossRefPubMedGoogle Scholar
  99. 99.
    Hsiao J-K, Law B, Weissleder R, Tung CH (2006) In-vivo imaging of tumor associated urokinase-type plasminogen activator activityGoogle Scholar
  100. 100.
    Hu VW, Frank BC, Heine S, Lee NH, Quackenbush J (2006) Gene expression profiling of lymphoblastoid cell lines from monozygotic twins discordant in severity of autism reveals differential regulation of neurologically relevant genes. BMC Genom 7:118–118.  https://doi.org/10.1186/1471-2164-7-118CrossRefGoogle Scholar
  101. 101.
    Hume SP, Myers R (2002) Dedicated small animal scanners: a new tool for drug development? Curr Pharm Des 8(16):1497–1511.  https://doi.org/10.2174/1381612023394412CrossRefPubMedGoogle Scholar
  102. 102.
    Ichikawa T, Högemann D, Saeki Y, Tyminski E, Terada K, Weissleder R, Basilion JP (2002) MRI of transgene expression: correlation to therapeutic gene expression. Neoplasia 4(6):523–530.  https://doi.org/10.1038/sj.neo.7900266CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Iftimia N, Iyer AK, Hammer DX, Lue N, Mujat M, Pitman M, Amiji M (2011) Fluorescence-guided optical coherence tomography imaging for colon cancer screening: a preliminary mouse study. Biomed Opt Express 3(1):178–191.  https://doi.org/10.1364/boe.3.000178CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Inoue T, Kim EE, Wong FCL, Yang DJ, Bassa P, Wong W-H, Podoloff DA (1996) Comparison of fluorine-18-fluorodeoxyglucose and carbon-11-methionine PET in detection of malignant tumors. J Nucl Med 37(9):1472–1476PubMedGoogle Scholar
  105. 105.
    Jafari-Khouzani K, Emblem KE, Kalpathy-Cramer J, Bjørnerud A, Vangel MG, Gerstner ER, Stufflebeam SM (2015) Repeatability of cerebral perfusion using dynamic susceptibility contrast MRI in glioblastoma patients. Transl Oncol 8(3):137–146.  https://doi.org/10.1016/j.tranon.2015.03.002CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Jager GJ, Ruijter ET, van de Kaa CA, de la Rosette JJ, Oosterhof GO, Thornbury JR, Barentsz JO (1997) Dynamic TurboFLASH subtraction technique for contrast-enhanced MR imaging of the prostate: correlation with histopathologic results. Radiology 203(3):645–652.  https://doi.org/10.1148/radiology.203.3.9169683CrossRefPubMedGoogle Scholar
  107. 107.
    Jeremy CH, Simon RA, David TD (1997) Optical imaging in medicine: I. Experimental techniques. Phys Med Biol 42(5):825Google Scholar
  108. 108.
    Jiang S, Gnanasammandhan MK, Zhang Y (2010) Optical imaging-guided cancer therapy with fluorescent nanoparticles. J R Soc Interface 7(42):3–18.  https://doi.org/10.1098/rsif.2009.0243CrossRefPubMedGoogle Scholar
  109. 109.
    Jones KM, Randtke EA, Yoshimaru ES, Howison CM, Chalasani P, Klein RR, Pagel MD (2017) Clinical translation of tumor acidosis measurements with AcidoCEST MRI. Mol Imaging Biol 19(4):617–625.  https://doi.org/10.1007/s11307-016-1029-7CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Jones KM, Stuehm CA, Hsu CC, Kuo PH, Pagel MD, Randtke EA (2017). Imaging lung cancer by using chemical exchange saturation transfer MRI with retrospective respiration gating. Tomography (Ann Arbor, Mich.) 3(4):201–210.  https://doi.org/10.18383/j.tom.2017.00017
  111. 111.
    Jones T, Price P (2012) Development and experimental medicine applications of PET in oncology: a historical perspective. Lancet Oncol 13(3):e116–e125.  https://doi.org/10.1016/s1470-2045(11)70183-8CrossRefPubMedGoogle Scholar
  112. 112.
    Josefsson A, Nedrow JR, Park S, Banerjee SR, Rittenbach A, Jammes F, Sgouros G (2016) Imaging, biodistribution, and dosimetry of radionuclide-labeled PD-L1 antibody in an immunocompetent mouse model of breast cancer. Can Res 76(2):472.  https://doi.org/10.1158/0008-5472.can-15-2141CrossRefGoogle Scholar
  113. 113.
    Joshi BP, Wang TD (2010) Exogenous molecular probes for targeted imaging in cancer: focus on multi-modal imaging. Cancers 2(2):1251–1287.  https://doi.org/10.3390/cancers2021251CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Karunanithi S, Sharma P, Kumar A, Khangembam BC, Bandopadhyaya GP, Kumar R, Bal C (2013) 18F-FDOPA PET/CT for detection of recurrence in patients with glioma: prospective comparison with 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 40(7):1025–1035.  https://doi.org/10.1007/s00259-013-2384-0CrossRefPubMedGoogle Scholar
  115. 115.
    Kato H, Kuwano H, Nakajima M, Miyazaki T, Yoshikawa M, Ojima H, Endo K (2002) Comparison between positron emission tomography and computed tomography in the use of the assessment of esophageal carcinoma. Cancer 94(4):921–928.  https://doi.org/10.1002/cncr.10330CrossRefPubMedGoogle Scholar
  116. 116.
    Ke S, Wen X, Gurfinkel M, Charnsangavej C, Wallace S, Sevick-Muraca EM, Li C (2003) Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Can Res 63(22):7870Google Scholar
  117. 117.
    Kemp WJM, Stehouwer BL, Boer VO, Luijten PR, Klomp DWJ, Wijnen JP (2016) Proton and phosphorus magnetic resonance spectroscopy of the healthy human breast at 7T. NMR Biomed 30(2):e3684.  https://doi.org/10.1002/nbm.3684CrossRefPubMedCentralGoogle Scholar
  118. 118.
    Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO (2007) Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 34(9):1339–1347.  https://doi.org/10.1007/s00259-007-0379-4CrossRefPubMedGoogle Scholar
  119. 119.
    Keshari KR, Kurhanewicz J, Bok R, Larson PEZ, Vigneron DB, Wilson DM (2011) Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging. Proc Natl Acad Sci USA 108(46):18606–18611.  https://doi.org/10.1073/pnas.1106920108CrossRefPubMedGoogle Scholar
  120. 120.
    Keshari KR, Wilson DM, Chen AP, Bok R, Larson PEZ, Hu S, Kurhanewicz J (2009) Hyperpolarized [2-13C]-fructose: a hemiketal DNP substrate for in vivo metabolic imaging. J Am Chem Soc 131(48):17591–17596.  https://doi.org/10.1021/ja9049355CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Kettunen MI, Hu D-E, Witney TH, McLaughlin R, Gallagher FA, Bohndiek SE, Brindle KM (2010) Magnetization transfer measurements of exchange between hyperpolarized [1-13C]pyruvate and [1-13C]lactate in a murine lymphoma. Magn Reson Med 63(4):872–880.  https://doi.org/10.1002/mrm.22276CrossRefPubMedGoogle Scholar
  122. 122.
    Kim HS, Cho HR, Choi SH, Woo JS, Moon WK (2010) In vivo imaging of tumor transduced with bimodal lentiviral vector encoding human ferritin and green fluorescent protein on a 1.5T clinical magnetic resonance scanner. Cancer Res 70(18):7315Google Scholar
  123. 123.
    Kircher MF, Hricak H, Larson SM (2012) Molecular imaging for personalized cancer care. Mol Oncol 6(2):182–195.  https://doi.org/10.1016/j.molonc.2012.02.005CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Koh DM, Collins DJ, Wallace T, Chau I, Riddell AM (2012) Combining diffusion-weighted MRI with Gd-EOB-DTPA-enhanced MRI improves the detection of colorectal liver metastases. Br J Radiol 85(1015):980–989.  https://doi.org/10.1259/bjr/91771639CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Koopmans KP, de Vries EGE, Kema IP, Elsinga PH, Neels OC, Sluiter WJ, Jager PL (2006) Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol 7(9):728–734.  https://doi.org/10.1016/S1470-2045(06)70801-4CrossRefPubMedGoogle Scholar
  126. 126.
    Korchinski DJ, Taha M, Yang R, Nathoo N, Dunn JF (2015) Iron Oxide as an MRI contrast agent for cell tracking. Magn Reson Insights 8(Suppl 1):15–29.  https://doi.org/10.4137/mri.s23557CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Kruchten V, Brown, E, Glaudemans EJM, Dierckx AAJO et al (2013) PET imaging of oestrogen receptors in patients with breast cancer. Lancet Oncol 14(11):e465–e475.  https://doi.org/10.1016/s1470-2045(13)70292-4
  128. 128.
    Kurhanewicz J, Vigneron DB, Ardenkjaer-Larsen JH, Bankson JA, Brindle K, Cunningham CH, Rizi R (2019) Hyperpolarized 13C MRI: path to clinical translation in oncology. Neoplasia 21(1):1–16.  https://doi.org/10.1016/j.neo.2018.09.006CrossRefPubMedGoogle Scholar
  129. 129.
    Kurhanewicz J, Vigneron DB, Brindle K, Chekmenev EY, Comment A, Cunningham CH, DeBerardinis RJ, Green GG, Leach MO, Rajan SS, Rizi RR, Malloy CR (2011) Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia (New York, N.Y.) 13(2):81–97Google Scholar
  130. 130.
    Kurhanewicz J, Vigneron DB, Hricak H, Parivar F, Nelson SJ, Shinohara K, Carroll PR (1996) Prostate cancer: metabolic response to cryosurgery as detected with 3D H-1 MR spectroscopic imaging. Radiology 200(2):489–496.  https://doi.org/10.1148/radiology.200.2.8685346CrossRefPubMedGoogle Scholar
  131. 131.
    Kurhanewicz J, Vigneron DB, Nelson SJ (2000) Three-dimensional magnetic resonance spectroscopic imaging of brain and prostate cancer. Neoplasia (New York, N.Y.) 2(1–2):166–189Google Scholar
  132. 132.
    Kvistad KA, Bakken IJ, Gribbestad IS, Ehrnholm B, Lundgren S, Fjøsne HE, Haraldseth O (1999) Characterization of neoplastic and normal human breast tissues with in vivo 1H MR spectroscopy. J Magn Reson Imaging 10(2):159–164.  https://doi.org/10.1002/(sici)1522-2586(199908)10:2%3c159:aid-jmri8%3e3.0.co;2-0CrossRefPubMedGoogle Scholar
  133. 133.
    Kwee SA, Coel MN, Ly BH, Lim J (2009) 18F-choline PET/CT imaging of RECIST measurable lesions in hormone refractory prostate cancer. Ann Nucl Med 23(6):541–548.  https://doi.org/10.1007/s12149-009-0273-1CrossRefPubMedGoogle Scholar
  134. 134.
    Kwock L, Smith JK, Castillo M, Ewend MG, Cush S, Hensing T, Bouldin TW (2002) Clinical applications of proton MR spectroscopy in oncology. Technol Cancer Res Treat 1(1):17–28.  https://doi.org/10.1177/153303460200100103CrossRefPubMedGoogle Scholar
  135. 135.
    Lanzardo S, Conti L, Brioschi C, Bartolomeo MP, Arosio D, Belvisi L, Forni G (2011) A new optical imaging probe targeting αVβ3 integrin in glioblastoma xenografts. Contrast Media Mol Imaging 6(6):449–458.  https://doi.org/10.1002/cmmi.444CrossRefPubMedGoogle Scholar
  136. 136.
    Law B, Curino A, Bugge TH, Weissleder R, Tung C-H (2004) Design, synthesis, and characterization of urokinase plasminogen-activator-sensitive near-infrared reporter. Chem Biol 11(1):99–106.  https://doi.org/10.1016/j.chembiol.2003.12.017CrossRefPubMedGoogle Scholar
  137. 137.
    Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168(2):497–505.  https://doi.org/10.1148/radiology.168.2.3393671CrossRefPubMedGoogle Scholar
  138. 138.
    Le Bihan D, Delannoy J, Levin RL (1989) Temperature mapping with MR imaging of molecular diffusion: application to hyperthermia. Radiology 171(3):853–857.  https://doi.org/10.1148/radiology.171.3.2717764CrossRefPubMedGoogle Scholar
  139. 139.
    LeBeau AM, Sevillano N, King ML, Duriseti S, Murphy ST, Craik CS, VanBrocklin HF (2014) Imaging the urokinase plasminongen activator receptor in preclinical breast cancer models of acquired drug resistance. Theranostics 4(3):267–279.  https://doi.org/10.7150/thno.7323CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Lecouvet FE, El Mouedden J, Collette L, Coche E, Danse E, Jamar F, Tombal B (2012) Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol 62(1):68–75.  https://doi.org/10.1016/j.eururo.2012.02.020CrossRefPubMedGoogle Scholar
  141. 141.
    Lee J-H, Springer CS Jr (2003) Effects of equilibrium exchange on diffusion-weighted NMR signals: the diffusigraphic “shutter-speed”. Magn Reson Med 49(3):450–458.  https://doi.org/10.1002/mrm.10402CrossRefPubMedGoogle Scholar
  142. 142.
    Leskinen-Kallio S, Någren K, Lehikoinen P, Ruotsalainen U, Teräs M, Joensuu H (1992) Carbon-11-methionine and PET is an effective method to image head and neck cancer. J Nucl Med 33(5):691–695PubMedGoogle Scholar
  143. 143.
    Lesniak WG, Chatterjee S, Gabrielson M, Lisok A, Wharram B, Pomper MG, Nimmagadda S (2016) PD-L1 detection in tumors using [64Cu]atezolizumab with PET. Bioconjug Chem 27(9):2103–2110.  https://doi.org/10.1021/acs.bioconjchem.6b00348CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Lev MH, Rosen BR (1999) Clinical applications of intracranial perfusion MR imaging. Neuroimaging Clin N Am 9(2):309–331PubMedGoogle Scholar
  145. 145.
    Lewis DY, Soloviev D, Brindle KM (2015) Imaging tumor metabolism using positron emission tomography. Cancer J (Sudbury, Mass.) 21(2):129–136.  https://doi.org/10.1097/ppo.0000000000000105
  146. 146.
    Li B, Li Q, Nie W, Liu S (2014) Diagnostic value of whole-body diffusion-weighted magnetic resonance imaging for detection of primary and metastatic malignancies: a meta-analysis. Eur J Radiol 83(2):338–344.  https://doi.org/10.1016/j.ejrad.2013.11.017CrossRefPubMedGoogle Scholar
  147. 147.
    Li G, Wang X, Zong S, Wang J, Conti PS, Chen K (2014) MicroPET imaging of CD13 expression using a 64Cu-labeled dimeric NGR peptide based on sarcophagine cage. Mol Pharm 11(11):3938–3946.  https://doi.org/10.1021/mp500354xCrossRefPubMedGoogle Scholar
  148. 148.
    Li X, Liu Q, Wang M, Jin X, Liu Q, Yao S, Li J (2008) C-11 choline PET/CT imaging for differentiating malignant from benign prostate lesions. Clin Nucl Med 33(10):671–676.  https://doi.org/10.1097/rlu.0b013e318184b3a0CrossRefPubMedGoogle Scholar
  149. 149.
    Lin G, Chung Y-L (2014) Current opportunities and challenges of magnetic resonance spectroscopy, positron emission tomography, and mass spectrometry imaging for mapping cancer metabolism in vivo. Biomed Res Int 2014:13.  https://doi.org/10.1155/2014/625095CrossRefGoogle Scholar
  150. 150.
    Liu F, Xu X, Zhu H, Zhang Y, Yang J, Zhang L, Yang Z (2018) PET imaging of 18F-(2S,4R)4-fluoroglutamine accumulation in breast cancer: from xenografts to patients. Mol Pharm 15(8):3448–3455.  https://doi.org/10.1021/acs.molpharmaceut.8b00430CrossRefPubMedGoogle Scholar
  151. 151.
    Lizarraga KJ, Allen-Auerbach M, Czernin J, DeSalles AAF, Yong WH, Phelps ME, Chen W (2014) 18F-FDOPA PET for differentiating recurrent or progressive brain metastatic tumors from late or delayed radiation injury after radiation treatment. J Nucl Med 55(1):30–36.  https://doi.org/10.2967/jnumed.113.121418CrossRefPubMedGoogle Scholar
  152. 152.
    Ma B, Blakeley JO, Hong X, Zhang H, Jiang S, Blair L, Zhou J (2016) Applying amide proton transfer-weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas. J Magn Reson Imaging 44(2):456–462.  https://doi.org/10.1002/jmri.25159CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Mayr NA, Yuh WTC, Arnholt JC, Ehrhardt JC, Sorosky JI, Magnotta VA, Buatti JM (2000) Pixel analysis of MR perfusion imaging in predicting radiation therapy outcome in cervical cancer. J Magn Reson Imaging 12(6):1027–1033.  https://doi.org/10.1002/1522-2586(200012)12:6%3c1027:aid-jmri31%3e3.0.co;2-5CrossRefPubMedGoogle Scholar
  154. 154.
    McIntyre JO, Matrisian LM (2003) Molecular imaging of proteolytic activity in cancer. J Cell Biochem 90(6):1087–1097.  https://doi.org/10.1002/jcb.10713CrossRefPubMedGoogle Scholar
  155. 155.
    McKnight TR (2004) Proton magnetic resonance spectroscopic evaluation of brain tumor metabolism. Semin Oncol 31(5):605–617.  https://doi.org/10.1053/j.seminoncol.2004.07.003CrossRefPubMedGoogle Scholar
  156. 156.
    Mehrkens JH, Pöpperl G, Rachinger W, Herms J, Seelos K, Tatsch K, Kreth FW (2008) The positive predictive value of O-(2-[18F]fluoroethyl)-l-tyrosine (FET) PET in the diagnosis of a glioma recurrence after multimodal treatment. J Neurooncol 88(1):27–35.  https://doi.org/10.1007/s11060-008-9526-4CrossRefPubMedGoogle Scholar
  157. 157.
    Meier R, Golovko D, Tavri S, Henning TD, Knopp C, Piontek G, Daldrup-Link H (2011) Depicting adoptive immunotherapy for prostate cancer in an animal model with magnetic resonance imaging. Magn Reson Med 65(3):756–763.  https://doi.org/10.1002/mrm.22652CrossRefPubMedGoogle Scholar
  158. 158.
    Meisamy S, Bolan PJ, Baker EH, Pollema MG, Le CT, Kelcz F, Lechner MC, Luikens BA, Carlson RA, Brandt KR, Amrami KK, Garwood M (2005) Adding in vivo quantitative 1H MR spectroscopy to improve diagnostic accuracy of breast MR imaging: preliminary results of observer performance study at 4.0 T. Radiology 236(2):465–475.  https://doi.org/10.1148/radiol.2362040836
  159. 159.
    Moon BF, Jones KM, Chen LQ, Liu P, Randtke EA, Howison CM, Pagel MD (2015) A comparison of iopromide and iopamidol, two acidoCEST MRI contrast media that measure tumor extracellular pH. Contrast Media Mol Imaging 10(6):446–455.  https://doi.org/10.1002/cmmi.1647CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari HS, Wendland MF, Norman D (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176(2):439–445.  https://doi.org/10.1148/radiology.176.2.2367658CrossRefPubMedGoogle Scholar
  161. 161.
    Mueller-Lisse UG, Swanson MG, Vigneron DB, Hricak H, Bessette A, Males RG, Kurhanewicz J (2001) Time-dependent effects of hormone-deprivation therapy on prostate metabolism as detected by combined magnetic resonance imaging and 3D magnetic resonance spectroscopic imaging. Magn Reson Med 46(1):49–57.  https://doi.org/10.1002/mrm.1159CrossRefPubMedGoogle Scholar
  162. 162.
    Narquin S, Ingrand P, Azais I, Delwail V, Vialle R, Boucecbi S, Tasu JP (2013) Comparison of whole-body diffusion MRI and conventional radiological assessment in the staging of myeloma. Diagn Interv Imaging 94(6):629–636.  https://doi.org/10.1016/j.diii.2013.01.005CrossRefPubMedGoogle Scholar
  163. 163.
    Natarajan A, Mayer AT, Xu L, Reeves RE, Gano J, Gambhir SS (2015) Novel radiotracer for ImmunoPET imaging of PD-1 checkpoint expression on tumor infiltrating lymphocytes. Bioconjug Chem 26(10):2062–2069.  https://doi.org/10.1021/acs.bioconjchem.5b00318CrossRefPubMedGoogle Scholar
  164. 164.
    Neal A, Moffat BA, Stein JM, Nanga RPR, Desmond P, Shinohara RT, Davis KA (2019) Glutamate weighted imaging contrast in gliomas with 7 Tesla magnetic resonance imaging. NeuroImage Clin 22:101694–101694.  https://doi.org/10.1016/j.nicl.2019.101694CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Nielsen T, Wittenborn T, Horsman MR (2012) Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in preclinical studies of antivascular treatments. Pharmaceutics 4(4):563–589.  https://doi.org/10.3390/pharmaceutics4040563CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Niemeijer A-LN, Smit EF, Dongen GM, Windhorst AD, Huisman MC, Hendrikse NH, Leung DK, Smith RA, Hayes W, Velasquez LM, Bonacorsi SJ, De Langen J (2017) Whole body PD-1 and PD-L1 PET with 89Zr-nivolumab and 18F-BMS-986192 in pts with NSCLC. J Clin Oncol 35(15_suppl):e20047–e20047.  https://doi.org/10.1200/jco.2017.35.15_suppl.e20047
  167. 167.
    Norris D (2001) The effects of microscopic tissue parameters on the diffusion weighted magnetic resonance imaging experiment. NMR Biomed 14:77–93Google Scholar
  168. 168.
    Notni J, Reich D, Maltsev OV, Kapp TG, Steiger K, Hoffmann F, Wester H-J (2017) In vivo PET imaging of the cancer integrin αvβ6 using 68 Ga-labeled cyclic RGD nonapeptides. J Nucl Med 58(4):671–677.  https://doi.org/10.2967/jnumed.116.182824CrossRefPubMedGoogle Scholar
  169. 169.
    Ntziachristos V (2006) Fluorescence molecular imaging. Annu Rev Biomed Eng 8(1):1–33.  https://doi.org/10.1146/annurev.bioeng.8.061505.095831CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    O’Farrell AC, Shnyder SD, Marston G, Coletta PL, Gill JH (2013) Non-invasive molecular imaging for preclinical cancer therapeutic development. Br J Pharmacol 169(4):719–735.  https://doi.org/10.1111/bph.12155CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Ocak I, Bernardo M, Metzger G, Barrett T, Pinto P, Albert PS, Choyke PL (2007) Dynamic contrast-enhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters. Am J Roentgenol 189(4):W192–W201.  https://doi.org/10.2214/ajr.06.1329CrossRefGoogle Scholar
  172. 172.
    Oyama N, Miller TR, Dehdashti F, Siegel BA, Fischer KC, Michalski JM, Welch MJ (2003) 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44(4):549–555PubMedGoogle Scholar
  173. 173.
    Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, Dzik-Jurasz A, Ross BD, Van Cauteren M, Collins D, Hammoud DA, Choyke PL (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia (New York, N.Y.) 11(2):102–125Google Scholar
  174. 174.
    Padhani AR, van Ree K, Collins DJ, D’Sa S, Makris A (2013) Assessing the relation between bone marrow signal intensity and apparent diffusion coefficient in diffusion-weighted MRI. Am J Roentgenol 200(1):163–170.  https://doi.org/10.2214/ajr.11.8185CrossRefGoogle Scholar
  175. 175.
    Pantel AR, Ackerman D, Lee S-C, Mankoff DA, Gade TP (2018) Imaging cancer metabolism: underlying biology and emerging strategies. J Nucl Med 59(9):1340–1349.  https://doi.org/10.2967/jnumed.117.199869CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Park GE, Jee W-H, Lee S-Y, Sung J-K, Jung J-Y, Grimm R, Ha K-Y (2018) Differentiation of multiple myeloma and metastases: use of axial diffusion-weighted MR imaging in addition to standard MR imaging at 3T. PLoS ONE 13(12):e0208860–e0208860.  https://doi.org/10.1371/journal.pone.0208860CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Petersen RK, Hess S, Alavi A, Høilund-Carlsen PF (2014) Clinical impact of FDG-PET/CT on colorectal cancer staging and treatment strategy. Am J Nucl Med Mol Imaging 4(5):471–482PubMedPubMedCentralGoogle Scholar
  178. 178.
    Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J, Alvarez K, Franzoso G (2004) Ferritin heavy chain upregulation by NF-κB inhibits TNFα-induced apoptosis by suppressing reactive oxygen species. Cell 119(4):529–542.  https://doi.org/10.1016/j.cell.2004.10.017CrossRefPubMedGoogle Scholar
  179. 179.
    Provenzale JM, Wang GR, Brenner T, Petrella JR, Sorensen AG (2002) Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. Am J Roentgenol 178(3):711–716.  https://doi.org/10.2214/ajr.178.3.1780711CrossRefGoogle Scholar
  180. 180.
    Rajendran R, Huang W, Tang AMY, Liang JM, Choo S, Reese T, Chuang KH (2014) Early detection of antiangiogenic treatment responses in a mouse xenograft tumor model using quantitative perfusion MRI. Cancer Med 3(1):47–60.  https://doi.org/10.1002/cam4.177CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Rao J, Dragulescu-Andrasi A, Yao H (2007) Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 18(1):17–25.  https://doi.org/10.1016/j.copbio.2007.01.003CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Ray P, Wu AM, Gambhir SS (2003) Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Can Res 63(6):1160Google Scholar
  183. 183.
    Reddick WE, Taylor JS, Fletcher BD (1999) Dynamic MR imaging (DEMRI) of microcirculation in bone sarcoma. J Magn Reson Imaging 10(3):277–285.  https://doi.org/10.1002/(sici)1522-2586(199909)10:3%3c277:aid-jmri8%3e3.0.co;2-sCrossRefPubMedGoogle Scholar
  184. 184.
    Rehemtulla A, Stegman LD, Cardozo SJ, Gupta S, Hall DE, Contag CH, Ross BD (2000) Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia (New York, N.Y.) 2(6):491–495Google Scholar
  185. 185.
    Rieber A, Brambs HJ, Gabelmann A, Heilmann V, Kreienberg R, Kühn T (2002) Breast MRI for monitoring response of primary breast cancer to neo-adjuvant chemotherapy. Eur Radiol 12(7):1711–1719.  https://doi.org/10.1007/s00330-001-1233-xCrossRefPubMedGoogle Scholar
  186. 186.
    Rivlin M, Navon G (2016) Glucosamine and N-acetyl glucosamine as new CEST MRI agents for molecular imaging of tumors. Sci Rep 6:32648–32648.  https://doi.org/10.1038/srep32648CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Rivlin M, Navon G (2018) CEST MRI of 3-O-methyl-d-glucose on different breast cancer models. Magn Reson Med 79(2):1061–1069.  https://doi.org/10.1002/mrm.26752CrossRefPubMedGoogle Scholar
  188. 188.
    Rivlin M, Tsarfaty I, Navon G (2014) Functional molecular imaging of tumors by chemical exchange saturation transfer MRI of 3-O-Methyl-d-glucose. Magn Reson Med 72(5):1375–1380.  https://doi.org/10.1002/mrm.25467CrossRefPubMedGoogle Scholar
  189. 189.
    Roberts HC, Roberts TPL, Brasch RC, Dillon WP (2000) Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. Am J Neuroradiol 21(5):891PubMedGoogle Scholar
  190. 190.
    Rodrigues TB, Serrao EM, Kennedy BWC, Hu D-E, Kettunen MI, Brindle KM (2014) Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C-labeled glucose. Nat Med 20(1):93–97.  https://doi.org/10.1038/nm.3416CrossRefPubMedGoogle Scholar
  191. 191.
    Rosenkrantz AB, Friedman K, Chandarana H, Melsaether A, Moy L, Ding Y-S, Jain R (2016) Current status of hybrid PET/MRI in oncologic imaging. AJR Am J Roentgenol 206(1):162–172.  https://doi.org/10.2214/ajr.15.14968CrossRefPubMedGoogle Scholar
  192. 192.
    Russo F, Mazzetti S, Grignani G, De Rosa G, Aglietta M, Anselmetti GC, Stasi M, Regge D (2011) In vivo characterisation of soft tissue tumours by 1.5-T proton MR spectroscopy. Eur Radiol 22:1131–1139Google Scholar
  193. 193.
    Sadikot RT, Blackwell TS (2005) Bioluminescence imaging. Proc Am Thorac Soc 2(6):537–512.  https://doi.org/10.1513/pats.200507-067dsCrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Sagiyama K, Mashimo T, Togao O, Vemireddy V, Hatanpaa KJ, Maher EA, Takahashi M (2014) In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma. Proc Natl Acad Sci USA 111(12):4542–4547.  https://doi.org/10.1073/pnas.1323855111CrossRefPubMedGoogle Scholar
  195. 195.
    Schneider MJ, Cyran CC, Nikolaou K, Hirner H, Reiser MF, Dietrich O (2014) Monitoring early response to anti-angiogenic therapy: diffusion-weighted magnetic resonance imaging and volume measurements in colon carcinoma xenografts. PLoS ONE 9(9):e106970–e106970.  https://doi.org/10.1371/journal.pone.0106970CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Schwamm Lee H, Koroshetz Walter J, Sorensen AG, Wang B, Copen William A, Budzik R, Gonzalez RG (1998) Time course of lesion development in patients with acute stroke. Stroke 29(11):2268–2276.  https://doi.org/10.1161/01.str.29.11.2268CrossRefGoogle Scholar
  197. 197.
    Schwarz AJ, Maisey NR, Collins DJ, Cunningham D, Huddart R, Leach MO (2002) Early in vivo detection of metabolic response: a pilot study of 1H MR spectroscopy in extracranial lymphoma and germ cell tumours. Br J Radiol 75(900):959–966.  https://doi.org/10.1259/bjr.75.900.750959CrossRefPubMedGoogle Scholar
  198. 198.
    Seevinck PR, Deddens LH, Dijkhuizen RM (2010) Magnetic resonance imaging of brain angiogenesis after stroke. Angiogenesis 13(2):101–111.  https://doi.org/10.1007/s10456-010-9174-0CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R, Smith GT (2010) SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med 51(11):1813–1820.  https://doi.org/10.2967/jnumed.110.082263
  200. 200.
    Sherry AD, Woods M (2008) Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. Annu Rev Biomed Eng 10:391–411.  https://doi.org/10.1146/annurev.bioeng.9.060906.151929CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Siggelkow W, Zimny M, Faridi A, Petzold K, Buell U, Rath W (2003) The value of positron emission tomography in the follow-up for breast cancer. Anticancer Res 23(2C):1859–1867PubMedGoogle Scholar
  202. 202.
    Singh A, Haris M, Rathore D, Purwar A, Sarma M, Bayu G, Gupta RK (2007) Quantification of physiological and hemodynamic indices using T1 dynamic contrast-enhanced MRI in intracranial mass lesions. J Magn Reson Imaging 26(4):871–880.  https://doi.org/10.1002/jmri.21080CrossRefPubMedGoogle Scholar
  203. 203.
    Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J (2008) 11C-l-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imag Biol 10(1):1–18.  https://doi.org/10.1007/s11307-007-0115-2CrossRefGoogle Scholar
  204. 204.
    Sinha S, Lucas-Quesada FA, Sinha U, DeBruhl N, Bassett LW (2002) In vivo diffusion-weighted MRI of the breast: Potential for lesion characterization. J Magn Reson Imaging 15(6):693–704.  https://doi.org/10.1002/jmri.10116CrossRefPubMedGoogle Scholar
  205. 205.
    Sinkus R, Van Beers BE, Vilgrain V, DeSouza N, Waterton JC (2012) Apparent diffusion coefficient from magnetic resonance imaging as a biomarker in oncology drug development. Eur J Cancer 48(4):425–431.  https://doi.org/10.1016/j.ejca.2011.11.034CrossRefPubMedGoogle Scholar
  206. 206.
    Sokolov K, Follen M, Richards-Kortum R (2002) Optical spectroscopy for detection of neoplasia. Curr Opin Chem Biol 6(5):651–658.  https://doi.org/10.1016/S1367-5931(02)00381-2CrossRefPubMedGoogle Scholar
  207. 207.
    Solomon M, Liu Y, Berezin MY, Achilefu S (2011) Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring. Med Principles Pract 20(5):397–415.  https://doi.org/10.1159/000327655CrossRefGoogle Scholar
  208. 208.
    Song KD, Choi D, Lee JH, Im GH, Yang J, Kim J-H, Lee WJ (2014) Evaluation of tumor microvascular response to brivanib by dynamic contrast-enhanced 7-T MRI in an orthotopic xenograft model of hepatocellular carcinoma. Am J Roentgenol 202(6):W559–W566.  https://doi.org/10.2214/ajr.13.11042CrossRefGoogle Scholar
  209. 209.
    Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42(1):288–292.  https://doi.org/10.1063/1.1695690CrossRefGoogle Scholar
  210. 210.
    Su H, Forbes A, Gambhir SS, Braun J (2004) Quantitation of cell number by a positron emission tomography reporter gene strategy. Mol Imag Biol 6(3):139–148.  https://doi.org/10.1016/j.mibio.2004.02.001CrossRefGoogle Scholar
  211. 211.
    Subhawong TK, Jacobs MA, Fayad LM (2014) Diffusion-weighted MR imaging for characterizing musculoskeletal lesions. Radiographics 34(5):1163–1177.  https://doi.org/10.1148/rg.345140190
  212. 212.
    Subhawong TK, Wang X, Durand DJ, Jacobs MA, Carrino JA, Machado AJ, Fayad LM (2012) Proton MR spectroscopy in metabolic assessment of musculoskeletal lesions. AJR Am J Roentgenol 198(1):162–172.  https://doi.org/10.2214/ajr.11.6505CrossRefPubMedPubMedCentralGoogle Scholar
  213. 213.
    Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, Kira T, Takahashi M (2000) Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. Am J Neuroradiol 21(5):901PubMedGoogle Scholar
  214. 214.
    Sumi M, Sakihama N, Sumi T, Morikawa M, Uetani M, Kabasawa H, Nakamura T (2003) Discrimination of metastatic cervical lymph nodes with diffusion-weighted MR imaging in patients with head and neck cancer. Am J Neuroradiol 24(8):1627PubMedGoogle Scholar
  215. 215.
    Sun J, Zhang X-P, Li X-T, Tang L, Cui Y, Zhang X-Y, Sun Y-S (2014) Applicable apparent diffusion coefficient of an orthotopic mouse model of gastric cancer by improved clinical MRI diffusion weighted imaging. Sci Rep 4:6072–6072.  https://doi.org/10.1038/srep06072CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Sun Y, Schmidt NO, Schmidt K, Doshi S, Rubin JB, Mulkern RV, Kieran MW (2004) Perfusion MRI of U87 brain tumors in a mouse model. Magn Reson Med 51(5):893–899.  https://doi.org/10.1002/mrm.20029CrossRefPubMedGoogle Scholar
  217. 217.
    Sweeney TJ, Mailänder V, Tucker AA, Olomu AB, Zhang W, Cao Y, Negrin RS, Contag CH (1999). Visualizing the kinetics of tumor-cell clearance in living animals. Proc Natl Acad Sci U S A 96(21):12044–12049Google Scholar
  218. 218.
    Szwergold BS (1992) NMR spectroscopy of cells. Annu Rev Physiol 54(1):775–798.  https://doi.org/10.1146/annurev.ph.54.030192.004015CrossRefPubMedGoogle Scholar
  219. 219.
    Tatsumi M, Nakamoto Y, Traughber B, Marshall LT, Geschwind J-FH, Wahl RL (2003) Initial experience in small animal tumor imaging with a clinical positron emission tomography/computed tomography scanner using 2-[F-18]Fluoro-2-deoxy-d-glucose. Can Res 63(19):6252Google Scholar
  220. 220.
    Tehrani OS, Shields AF (2013) PET imaging of proliferation with pyrimidines. J Nucl Med 54(6):903–912.  https://doi.org/10.2967/jnumed.112.112201CrossRefPubMedGoogle Scholar
  221. 221.
    Thoeny HC, Ross BD (2010) Predicting and monitoring cancer treatment response with diffusion-weighted MRI. J Magn Reson Imaging 32(1):2–16.  https://doi.org/10.1002/jmri.22167CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    Thukral A, Thomasson DM, Chow CK, Eulate R, Wedam SB, Gupta SN, Swain SM (2007) Inflammatory breast cancer: dynamic contrast-enhanced MR in patients receiving bevacizumab—initial experience. Radiology 244(3):727–735.  https://doi.org/10.1148/radiol.2443060926CrossRefPubMedGoogle Scholar
  223. 223.
    Tian M, Zhang H, Oriuchi N, Higuchi T, Endo K (2004) Comparison of 11C-choline PET and FDG PET for the differential diagnosis of malignant tumors. Eur J Nucl Med Mol Imaging 31(8):1064–1072.  https://doi.org/10.1007/s00259-004-1496-yCrossRefPubMedGoogle Scholar
  224. 224.
    Tsien RY (2004) Building and breeding molecules to spy on cells and tumors. FEBS Lett 579(4):927–932.  https://doi.org/10.1016/j.febslet.2004.11.025CrossRefGoogle Scholar
  225. 225.
    Tumeh PC, Radu CG, Ribas A (2008) PET imaging of cancer immunotherapy. J Nucl Med 49(6):865–868.  https://doi.org/10.2967/jnumed.108.051342CrossRefPubMedGoogle Scholar
  226. 226.
    Tuncbilek N, Kaplan M, Altaner S, Atakan IH, Süt N, Inci O, Demir MK (2009) Value of dynamic contrast-enhanced MRI and correlation with tumor angiogenesis in bladder cancer. Am J Roentgenol 192(4):949–955.  https://doi.org/10.2214/ajr.08.1332CrossRefGoogle Scholar
  227. 227.
    Twelves CJ, Porter DA, Lowry M, Dobbs NA, Graves PE, Smith MA, Richards MA (1994) Phosphorus-31 metabolism of post-menopausal breast cancer studied in vivo by magnetic resonance spectroscopy. Br J Cancer 69(6):1151–1156PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    van der Veen EL, Bensch F, Glaudemans AWJM, Lub-de Hooge MN, de Vries EGE (2018) Molecular imaging to enlighten cancer immunotherapies and underlying involved processes. Cancer Treat Rev 70:232–244.  https://doi.org/10.1016/j.ctrv.2018.09.007CrossRefPubMedGoogle Scholar
  229. 229.
    van Dijken BRJ, van Laar PJ, Smits M, Dankbaar JW, Enting RH, van der Hoorn A (2019) Perfusion MRI in treatment evaluation of glioblastomas: clinical relevance of current and future techniques. J Magn Reson Imaging 49(1):11–22.  https://doi.org/10.1002/jmri.26306CrossRefPubMedGoogle Scholar
  230. 230.
    Vande Velde G, Raman Rangarajan J, Vreys R, Guglielmetti C, Dresselaers T, Verhoye M, Himmelreich U (2012) Quantitative evaluation of MRI-based tracking of ferritin-labeled endogenous neural stem cell progeny in rodent brain. NeuroImage 62(1):367–380.  https://doi.org/10.1016/j.neuroimage.2012.04.040CrossRefPubMedGoogle Scholar
  231. 231.
    Vandsburger MH, Radoul M, Addadi Y, Mpofu S, Cohen B, Eilam R, Neeman M (2013) Ovarian carcinoma: quantitative biexponential MR imaging relaxometry reveals the dynamic recruitment of ferritin-expressing fibroblasts to the angiogenic rim of tumors. Radiology 268(3):790–801.  https://doi.org/10.1148/radiol.13122053CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, Van Laere K (2009) EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 36(12):2103.  https://doi.org/10.1007/s00259-009-1264-0CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    Vilanova JC, Barceló J (2007) Prostate cancer detection: magnetic resonance (MR) spectroscopic imaging. Abdom Imaging 32(2):253–261.  https://doi.org/10.1007/s00261-007-9191-7CrossRefPubMedGoogle Scholar
  234. 234.
    Villeirs GM, De Meerleer GO, De Visschere PJ, Fonteyne VH, Verbaeys AC, Oosterlinck W (2011) Combined magnetic resonance imaging and spectroscopy in the assessment of high grade prostate carcinoma in patients with elevated PSA: A single-institution experience of 356 patients. Eur J Radiol 77(2):340–345.  https://doi.org/10.1016/j.ejrad.2009.08.007CrossRefPubMedGoogle Scholar
  235. 235.
    Villeirs GM, Oosterlinck W, Vanherreweghe E, De Meerleer GO (2010) A qualitative approach to combined magnetic resonance imaging and spectroscopy in the diagnosis of prostate cancer. Eur J Radiol 73(2):352–356.  https://doi.org/10.1016/j.ejrad.2008.10.034CrossRefPubMedGoogle Scholar
  236. 236.
    Vinogradov E, Sherry AD, Lenkinski RE (2013) CEST: from basic principles to applications, challenges and opportunities. J Magn Reson (San Diego, Calif.: 1997) 229:155–172.  https://doi.org/10.1016/j.jmr.2012.11.024
  237. 237.
    von Eyben FE, Kairemo K (2014) Meta-analysis of 11C-choline and 18F-choline PET/CT for management of patients with prostate cancer. Nucl Med Commun 35(3):221–230.  https://doi.org/10.1097/mnm.0000000000000040CrossRefGoogle Scholar
  238. 238.
    Vooijs M, Jonkers J, Lyons S, Berns A (2002) Noninvasive imaging of spontaneous retinoblastoma pathway-dependent tumors in mice. Can Res 62(6):1862Google Scholar
  239. 239.
    Walker-Samuel S, Ramasawmy R, Torrealdea F, Rega M, Rajkumar V, Johnson SP, Golay X (2013) In vivo imaging of glucose uptake and metabolism in tumors. Nat Med 19(8):1067–1072.  https://doi.org/10.1038/nm.3252CrossRefPubMedPubMedCentralGoogle Scholar
  240. 240.
    Wang J, Weygand J, Hwang K-P, Mohamed ASR, Ding Y, Fuller CD, Zhou J (2016) Magnetic resonance imaging of glucose uptake and metabolism in patients with head and neck cancer. Sci Rep 6:30618–30618.  https://doi.org/10.1038/srep30618CrossRefPubMedPubMedCentralGoogle Scholar
  241. 241.
    Wang K-H, Wang Y-M, Chiu L-H, Chen T-C, Tsai Y-H, Zuo CS, Lai W-FT (2018) Optical imaging of ovarian cancer using a matrix metalloproteinase-3-sensitive near-infrared fluorescent probe. PLoS ONE 13(2):e0192047–e0192047.  https://doi.org/10.1371/journal.pone.0192047CrossRefPubMedPubMedCentralGoogle Scholar
  242. 242.
    Wang S, Jarrett BR, Kauzlarich SM, Louie AY (2007) Core/shell quantum dots with high relaxivity and photoluminescence for multimodality imaging. J Am Chem Soc 129(13):3848–3856.  https://doi.org/10.1021/ja065996dCrossRefPubMedPubMedCentralGoogle Scholar
  243. 243.
    Wang W, Larson SM, Fazzari M, Tickoo SK, Kolbert K, Sgouros G, Robbins RJ (2000) Prognostic value of[18F]fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer. J Clin Endocrinol Metab 85(3):1107–1113.  https://doi.org/10.1210/jcem.85.3.6458CrossRefPubMedGoogle Scholar
  244. 244.
    Warburg O (1956) On the origin of cancer cells. Science 123(3191):309PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Ward CS, Venkatesh HS, Chaumeil MM, Brandes AH, Vancriekinge M, Dafni H, Ronen SM (2010) Noninvasive detection of target modulation following phosphatidylinositol 3-kinase inhibition using hyperpolarized 13C magnetic resonance spectroscopy. Can Res 70(4):1296–1305.  https://doi.org/10.1158/0008-5472.can-09-2251CrossRefGoogle Scholar
  246. 246.
    Wei SC, Duffy CR, Allison JP (2018) Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8(9):1069.  https://doi.org/10.1158/2159-8290.cd-18-0367CrossRefPubMedGoogle Scholar
  247. 247.
    Weissleder R (2006) Molecular imaging in cancer. Science 312(5777):1168PubMedCrossRefGoogle Scholar
  248. 248.
    Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, Chiocca EA, Basilion JP (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351.  https://doi.org/10.1038/73219CrossRefPubMedGoogle Scholar
  249. 249.
    Weissleder R, Tung C-H, Mahmood U, Bogdanov A Jr (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17:375.  https://doi.org/10.1038/7933CrossRefPubMedGoogle Scholar
  250. 250.
    Welsh DK, Kay SA (2005) Bioluminescence imaging in living organisms. Curr Opin Biotechnol 16(1):73–78.  https://doi.org/10.1016/j.copbio.2004.12.006CrossRefPubMedGoogle Scholar
  251. 251.
    Winter Patrick M, Morawski Anne M, Caruthers Shelton D, Fuhrhop Ralph W, Zhang H, Williams Todd A, Wickline Samuel A (2003) molecular imaging of angiogenesis in early-stage atherosclerosis with αvβ3-integrin–targeted nanoparticles. Circulation 108(18):2270–2274.  https://doi.org/10.1161/01.cir.0000093185.16083.95CrossRefPubMedGoogle Scholar
  252. 252.
    Wong JC, Provenzale JM, Petrella JR (2000) Perfusion MR imaging of brain neoplasms. Am J Roentgenol 174(4):1147–1157.  https://doi.org/10.2214/ajr.174.4.1741147CrossRefGoogle Scholar
  253. 253.
    Woodhams R, Matsunaga K, Iwabuchi K, Kan S, Hata H, Kuranami M, Hayakawa K (2005) Diffusion-weighted imaging of malignant breast tumors: the usefulness of apparent diffusion coefficient (ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension. J Comput Assist Tomogr 29(5):644–649.  https://doi.org/10.1097/01.rct.0000171913.74086.1bCrossRefPubMedGoogle Scholar
  254. 254.
    Xu X, Yadav NN, Knutsson L, Hua J, Kalyani R, Hall E, Laterra J, Blakeley J, Strowd R, Pomper M, Barker P, van Zijl PCM (2015) Dynamic glucose-enhanced (DGE) MRI: translation to human scanning and first results in glioma patients. Tomography (Ann Arbor, Mich.) 1(2):105–114.  https://doi.org/10.18383/j.tom.2015.00175
  255. 255.
    Yang G, Nie P, Kong Y, Sun H, Hou G, Han J (2015) MicroPET imaging of tumor angiogenesis and monitoring on antiangiogenic therapy with an 18F labeled RGD-based probe in SKOV-3 xenograft-bearing mice. Tumor Biology 36(5):3285–3291.  https://doi.org/10.1007/s13277-014-2958-xCrossRefPubMedGoogle Scholar
  256. 256.
    Yang L, Mao H, Cao Z, Wang YA, Peng X, Wang X, Nie S (2009) Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles. Gastroenterology 136(5):1514–1525.e1512.  https://doi.org/10.1053/j.gastro.2009.01.006CrossRefPubMedPubMedCentralGoogle Scholar
  257. 257.
    Yang Y, Gong M-F, Yang H, Zhang S, Wang G-X, Su T-S, Zhang D (2016) MR molecular imaging of tumours using ferritin heavy chain reporter gene expression mediated by the hTERT promoter. Eur Radiol 26(11):4089–4097.  https://doi.org/10.1007/s00330-016-4259-9CrossRefPubMedPubMedCentralGoogle Scholar
  258. 258.
    Yang Y, Hong H, Zhang Y, Cai W (2009) Molecular imaging of proteases in cancer. Cancer Growth Metastsis 2:13–27Google Scholar
  259. 259.
    Yhee JY, Kim SA, Koo H, Son S, Ryu JH, Youn I-C, Kim K (2012) Optical imaging of cancer-related proteases using near-infrared fluorescence matrix metalloproteinase-sensitive and cathepsin B-sensitive probes. Theranostics 2(2):179–189.  https://doi.org/10.7150/thno.3716CrossRefPubMedPubMedCentralGoogle Scholar
  260. 260.
    Yi X, Wang F, Qin W, Yang X, Yuan J (2014) Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field. Int J Nanomed 9:1347–1365.  https://doi.org/10.2147/ijn.s60206CrossRefGoogle Scholar
  261. 261.
    Yu J-X, Kodibagkar VD, Hallac RR, Liu L, Mason RP (2012) Dual 19F/1H MR gene reporter molecules for in vivo detection of β-galactosidase. Bioconjug Chem 23(3):596–603.  https://doi.org/10.1021/bc200647qCrossRefPubMedPubMedCentralGoogle Scholar
  262. 262.
    Yue J, Liu S, Wang R, Hu X, Xie Z, Huang Y, Jing X (2012) Transferrin-conjugated micelles: enhanced accumulation and antitumor effect for transferrin-receptor-overexpressing cancer models. Mol Pharm 9(7):1919–1931.  https://doi.org/10.1021/mp300213gCrossRefPubMedGoogle Scholar
  263. 263.
    Zhang Q, Wang F, Wu Y-S, Zhang K-K, Lin Y, Zhu X-Q, Huang Y-P (2015) Dual-color labeled anti-mucin 1 antibody for imaging of ovarian cancer: a preliminary animal study. Oncology letters 9(3):1231–1235.  https://doi.org/10.3892/ol.2014.2807CrossRefPubMedGoogle Scholar
  264. 264.
    Zhao N, Zhang C, Zhao Y, Bai B, An J, Zhang H, Wu JB, Shi C (2016) Optical imaging of gastric cancer with near-infrared heptamethine carbocyanine fluorescence dyes. Oncotarget 7(35):57277–57289.  https://doi.org/10.18632/oncotarget.10031
  265. 265.
    Zheng C, Zheng M, Gong P, Jia D, Zhang P, Shi B, Sheng Z, Ma Y, Cai L (2012) Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging. Biomaterials 33:5603–5609Google Scholar
  266. 266.
    Zhou J, Payen J-F, Wilson DA, Traystman RJ, van Zijl PCM (2003) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 9:1085.  https://doi.org/10.1038/nm907CrossRefPubMedGoogle Scholar
  267. 267.
    Zhou J, Tryggestad E, Wen Z, Lal B, Zhou T, Grossman R, van Zijl PCM (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17(1):130–134.  https://doi.org/10.1038/nm.2268CrossRefPubMedGoogle Scholar
  268. 268.
    Zhou R, Bagga P, Nath K, Hariharan H, Mankoff DA, Reddy R (2018) Glutamate-weighted chemical exchange saturation transfer magnetic resonance imaging detects glutaminase inhibition in a mouse model of triple-negative breast cancer. Can Res 78(19):5521.  https://doi.org/10.1158/0008-5472.can-17-3988CrossRefGoogle Scholar
  269. 269.
    Zhou R, Pantel AR, Li S, Lieberman BP, Ploessl K, Choi H, Mankoff DA (2017) [(18)F](2S,4R)4-fluoroglutamine PET detects glutamine pool size changes in triple-negative breast cancer in response to glutaminase inhibition. Can Res 77(6):1476–1484.  https://doi.org/10.1158/0008-5472.can-16-1945CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mohammad Haris
    • 1
    • 2
    • 3
    Email author
  • Sabah Nisar
    • 1
  • Sheema Hashem
    • 1
  • Ajaz A. Bhat
    • 1
  • Santosh Yadav
    • 1
  • Muralitharan Shanmugakonar
    • 2
  • Hamda Al-Naemi
    • 2
  • Puneet Bagga
    • 3
  • Shahab Uddin
    • 4
  • Ravinder Reddy
    • 3
  1. 1.Functional and Molecular ImagingSidra MedicineDohaQatar
  2. 2.Laboratory Animal Research CenterQatar UniversityDohaQatar
  3. 3.Center for Magnetic Resonance and Optical Imaging, Department of RadiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUSA
  4. 4.Academic Health System, Translational Research Institute, Hamad Medical CorporationDohaQatar

Personalised recommendations