Hybrid NOMA/OMA with Buffer-Aided Relaying for Cooperative Uplink System

  • Jianping Quan
  • Peng XuEmail author
  • Yunwu Wang
  • Zheng Yang
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 300)


In this paper, we consider a cooperative uplink network consisting of two users, a half-duplex decode-and-forward (DF) relay and a base station (BS). In the relaying network, the two users transmit packets to the buffer-aided relay using non-orthogonal multiple access (NOMA) or orthogonal multiple access (OMA) technology. We proposed a hybrid NOMA/OMA based mode selection (MS) scheme, which adaptively switches between the NOMA and OMA transmission modes according to the instantaneous strength of wireless links and the buffer state. Then, the state transmission matrix probabilities of the corresponding Markov chain is analyzed, and the performance in terms of sum throughput, outage probability, average packet delay and diversity gain are evaluated with closed form expressions. Numerical results are provided to demonstrate that hybrid NOMA/OMA achieves significant performance gains compared to conventional NOMA and OMA in most scenarios.


Hybrid NOMA/OMA Buffer-aided relaying Cooperative uplink system 


  1. 1.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley-Interscience, New York (2006) zbMATHGoogle Scholar
  2. 2.
    Ding, Z., Lei, X., Karagiannidis, G.K., Schober, R., Yuan, J., Bhargava, V.K.: A survey on non-orthogonal multiple access for 5G networks: research challenges and future trends. IEEE J. Sel. Areas Commun. 35(10), 2181–2195 (2017)CrossRefGoogle Scholar
  3. 3.
    Ding, Z., Peng, M., Poor, H.: Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun. Lett. 19(8), 1462–1465 (2015)CrossRefGoogle Scholar
  4. 4.
    Ding, Z., Yang, Z., Fan, P., Poor, H.V.: On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process. Lett. 21(12), 1501–1505 (2014)CrossRefGoogle Scholar
  5. 5.
    Jamali, V., Zlatanov, N., Schober, R.: Bidirectional buffer-aided relay networks with fixed rate transmission-part II: delay-constrained case. IEEE Trans. Wireless Commun. 14(3), 1339–1355 (2015)CrossRefGoogle Scholar
  6. 6.
    Kim, J.B., Lee, I.H.: Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Commun. Lett. 19(11), 2037–2040 (2015)CrossRefGoogle Scholar
  7. 7.
    Krikidis, I., Charalambous, T., Thompson, J.S.: Buffer-aided relay selection for cooperative diversity systems without delay constraints. IEEE Trans. Wireless Commun. 11(5), 1957–1967 (2012)CrossRefGoogle Scholar
  8. 8.
    Luo, S., Teh, K.C.: Adaptive transmission for cooperative NOMA system with buffer-aided relaying. IEEE Commun. Lett. 21(4), 937–940 (2017)CrossRefGoogle Scholar
  9. 9.
    Luo, S., Teh, K.C.: Buffer state based relay selection for buffer-aided cooperative relaying systems. IEEE Trans. Wireless Commun. 14(10), 5430–5439 (2015)CrossRefGoogle Scholar
  10. 10.
    Nomikos, N., Charalambous, T., Krikidis, I., Skoutas, D.N., Vouyioukas, D., Johansson, M.: A buffer-aided successive opportunistic relay selection scheme with power adaptation and inter-relay interference cancellation for cooperative diversity systems. IEEE Trans. Commun. 63(5), 1623–1634 (2015)CrossRefGoogle Scholar
  11. 11.
    Nomikos, N., Charalambous, T., Vouyioukas, D., Karagiannidis, G.K., Wichman, R.: Hybrid NOMA/OMA with buffer-aided relay selection in cooperative networks. IEEE J. Sel. Top. Signal Process. 13(3), 524–537 (2019)CrossRefGoogle Scholar
  12. 12.
    Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1997). Scholar
  13. 13.
    Xu, P., Cumanan, K.: Optimal power allocation scheme for non-orthogonal multiple access with alpha-fairness. IEEE J. Sel. Areas Commun. 35(10), 2357–2369 (2017)CrossRefGoogle Scholar
  14. 14.
    Xu, P., Ding, Z., Krikidis, I., Dai, X.: Achieving optimal diversity gain in buffer-aided relay networks with small buffer size. IEEE Trans. Veh. Technol. 65(10), 8788–8794 (2016)CrossRefGoogle Scholar
  15. 15.
    Xu, P., Yang, Z., Ding, Z., Zhang, Z.: Optimal relay selection schemes for cooperative NOMA. IEEE Trans. Veh. Technol. 67(8), 7851–7855 (2018)CrossRefGoogle Scholar
  16. 16.
    Yang, Z., Ding, Z., Wu, Y., Fan, P.: Novel relay selection strategies for cooperative NOMA. IEEE Trans. Veh. Technol. 66(11), 10114–10123 (2017)CrossRefGoogle Scholar
  17. 17.
    Zhang, Q., Liang, Z., Li, Q., Qin, J.: Buffer-aided non-orthogonal multiple access relaying systems in Rayleigh fading channels. IEEE Trans. Commun. 65(1), 95–106 (2017) Google Scholar
  18. 18.
    Zhang, Z., Wang, C., Gan, C., Sun, S., Wang, M.: Automatic modulation classification using convolutional neural network with features fusion of SPWVD and BJD. IEEE Trans. Signal Inf. Process. Netw. 5(3), 469–478 (2019)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zlatanov, N., Ikhlef, A., Islam, T., Schober, R.: Buffer-aided cooperative communications: opportunities and challenges. IEEE Commun. Mag. 52(4), 146–153 (2014)CrossRefGoogle Scholar
  20. 20.
    Zlatanov, N., Schober, R., Popovski, P.: Buffer-aided relaying with adaptive link selection. IEEE J. Sel. Areas Commun. 31(8), 1530–1542 (2013)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Authors and Affiliations

  • Jianping Quan
    • 1
  • Peng Xu
    • 1
    Email author
  • Yunwu Wang
    • 1
  • Zheng Yang
    • 2
  1. 1.Chongqing Key Laboratory of Mobile Communications Technology, School of Communication and Information EngineeringChongqing University of Posts and TelecommunicationsChongqingChina
  2. 2.Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of EducationFujian Normal UniversityFuzhouChina

Personalised recommendations