Advertisement

Iterative Division in the Distributive Full Non-associative Lambek Calculus

  • Igor SedlárEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12005)

Abstract

We study an extension of the Distributive Full Non-associative Lambek Calculus with iterative division operators. The iterative operators can be seen as representing iterative composition of linguistic resources or of actions. A complete axiomatization of the logic is provided and decidability is established via a proof of the finite model property.

Keywords

Distributive Full Non-associative Lambek Calculus Dynamic logic Iterated composition Lambek Calculus Transitive closure 

References

  1. 1.
    van Benthem, J.: A note on dynamic arrow logic. In: van Eijck, J., Visser, A. (eds.) Logic and Information Flow, pp. 15–29. MIT Press (1994)Google Scholar
  2. 2.
    van Benthem, J.: Logic and the flow of information. In: Prawitz, D., Skyrms, B., Westerstȧhl, D. (eds.) Logic, Methodology and Philosophy of Science IX, Studies in Logic and the Foundations of Mathematics, vol. 134, pp. 693–724. Elsevier (1995).  https://doi.org/10.1016/S0049-237X(06)80070-4CrossRefGoogle Scholar
  3. 3.
    Benthem, J.: Two logical faces of belief revision. In: Trypuz, R. (ed.) Krister Segerberg on Logic of Actions. OCL, vol. 1, pp. 281–300. Springer, Dordrecht (2014).  https://doi.org/10.1007/978-94-007-7046-1_13CrossRefGoogle Scholar
  4. 4.
    Bimbó, K., Dunn, J.M.: Relational semantics for Kleene logic and action logic. Notre Dame J. Formal Logic 46(4), 461–490 (2005).  https://doi.org/10.1305/ndjfl/1134397663MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Buszkowski, W.: On action logic: equational theories of action algebras. J. Logic Comput. 17(1), 199–217 (2006).  https://doi.org/10.1093/logcom/exl036MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chellas, B.: Modal Logic. An Introduction. Cambridge University Press, Cambridge (1980)CrossRefGoogle Scholar
  7. 7.
    Desharnais, J., Möller, B.: Non-associative Kleene algebra and temporal logics. In: Höfner, P., Pous, D., Struth, G. (eds.) RAMICS 2017. LNCS, vol. 10226, pp. 93–108. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57418-9_6CrossRefzbMATHGoogle Scholar
  8. 8.
    Došen, K.: A brief survey of frames for the Lambek Calculus. Math. Logic Q. 38(1), 179–187 (1992).  https://doi.org/10.1002/malq.19920380113MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)CrossRefGoogle Scholar
  10. 10.
    Holliday, W.H., Hoshi, T., Icard III, T.F.: A uniform logic of information dynamics. In: Bolander, T., Braüner, T., Ghilardi, S., Moss, L. (eds.) Advances in Modal Logic 2012, pp. 348–367. College Publications (2012)Google Scholar
  11. 11.
    Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inf. Comput. 110(2), 366–390 (1994).  https://doi.org/10.1006/inco.1994.1037MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kozen, D.: On action algebras. In: Logic and Information Flow, pp. 78–88. MIT Press (1994)Google Scholar
  13. 13.
    Kurtonina, N.: Frames and labels. A modal analysis of categorial inference. Ph.D. thesis, Utrecht University (1994)Google Scholar
  14. 14.
    Kurucz, Á., Németi, I., Sain, I., Simon, A.: Decidable and undecidable logics with a binary modality. J. Logic Lang. Inf. 4(3), 191–206 (1995).  https://doi.org/10.1007/BF01049412MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kuznetsov, S.: The logic of action lattices is undecidable. In: 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, 24–27 June 2019, pp. 1–9 (2019).  https://doi.org/10.1109/LICS.2019.8785659
  16. 16.
    Lambek, J.: The mathematics of sentence structure. Am. Math. Mon. 65(3), 154–170 (1958)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (ed.) Structure of Language and Its Mathematical Aspects, pp. 166–178. AMS, Providence (1961)CrossRefGoogle Scholar
  18. 18.
    Moortgat, M.J.: Multimodal linguistic inference. J. Logic Lang. Inf. 5(3), 349–385 (1996).  https://doi.org/10.1007/BF00159344MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Nishimura, H.: Semantical analysis of constructive PDL. Publ. Res. Inst. Math. Sci. 18(2), 847–858 (1982).  https://doi.org/10.2977/prims/1195183579MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Palka, E.: An infinitary sequent system for the equational theory of *-continuous action lattices. Fundamenta Informaticae 78(2), 295–309 (2007)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Pratt, V.: Action logic and pure induction. In: van Eijck, J. (ed.) JELIA 1990. LNCS, vol. 478, pp. 97–120. Springer, Heidelberg (1991).  https://doi.org/10.1007/BFb0018436CrossRefGoogle Scholar
  22. 22.
    Restall, G.: An Introduction to Substrucutral Logics. Routledge, London (2000)Google Scholar
  23. 23.
    Segerberg, K.: An Essay in Classical Modal Logic. Filosofiska Föreningen Och Filosofiska Institutionen Vid Uppsala Universitet, Uppsala (1971)Google Scholar
  24. 24.
    Sequoiah-Grayson, S.: Epistemic closure and commutative, nonassociative residuated structures. Synthese 190(1), 113–128 (2013).  https://doi.org/10.1007/s11229-010-9834-zMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Tedder, A.: Channel composition and ternary relation semantics. IFCoLog J. Logics Appl. 4(3), 731–735 (2017)Google Scholar
  26. 26.
    Venema, Y.: A crash course in arrow logic. In: Marx, M., Pólos, L., Masuch, M. (eds.) Arrow Logic and Multi-Modal Logic, pp. 3–34. Center for the Study of Language and Information, Stanford (1997)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.The Czech Academy of Sciences, Institute of Computer SciencePragueCzech Republic

Personalised recommendations