Advertisement

Resource Separation in Dynamic Logic of Propositional Assignments

  • Joseph Boudou
  • Andreas HerzigEmail author
  • Nicolas Troquard
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12005)

Abstract

We extend dynamic logic of propositional assignments by adding an operator of parallel composition that is inspired by separation logics. We provide an axiomatisation via reduction axioms, thereby establishing decidability. We also prove that the complexity of both the model checking and the satisfiability problem stay in PSPACE.

Keywords

Dynamic logic Separation logic Propositional assignments Parallel composition 

Notes

Acknowledgements

The paper benefitted from comments and remarks from the reviewers as well as from the attendees of DaLí 2019, in particular Alexandru Baltag, Raul Fervari, Rainer Hähnle and Dexter Kozen. We did our best take their comments into account.

Andreas Herzig’s work was done in the framework of the ANR project “Cognitive Planning in Persuasive Multimodal Communication” (CoPains).

References

  1. [BB18]
    Balbiani, P., Boudou, J.: Iteration-free PDL with storing, recovering and parallel composition: a complete axiomatization. J. Log. Comput. 28(4), 705–731 (2018)MathSciNetCrossRefGoogle Scholar
  2. [BdFV11]
    Benevides, M.R.F., de Freitas, R.P., Viana, J.P.: Propositional dynamic logic with storing, recovering and parallel composition. Electr. Notes Theor. Comput. Sci. 269, 95–107 (2011)MathSciNetCrossRefGoogle Scholar
  3. [BHST14]
    Balbiani, P., Herzig, A., Schwarzentruber, F., Troquard, N.: DL-PA and DCL-PC: model checking and satisfiability problem are indeed in PSPACE. CoRR, abs/1411.7825 (2014)Google Scholar
  4. [BHT13]
    Balbiani, P., Herzig, A., Troquard, N.: Dynamic logic of propositional assignments: a well-behaved variant of PDL. In: Kupferman, O. (ed.) Logic in Computer Science (LICS). IEEE (2013)Google Scholar
  5. [BO16]
    Brookes, S., O’Hearn, P.W.: SIGLOG News. Concurrent separation logic 3(3), 47–65 (2016)Google Scholar
  6. [Bro04]
    Brookes, S.: A semantics for concurrent separation logic. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 16–34. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28644-8_2. [GY04]CrossRefGoogle Scholar
  7. [Bro07]
    Brookes, S.: A semantics for concurrent separation logic. Theor. Comput. Sci. 375(1–3), 227–270 (2007)MathSciNetCrossRefGoogle Scholar
  8. [BV03]
    Balbiani, P., Vakarelov, D.: PDL with intersection of programs: a complete axiomatization. J. Appl. Non-Class. Log. 13(3–4), 231–276 (2003)CrossRefGoogle Scholar
  9. [CHM+16]
    Cooper, M.C., Herzig, A., Maffre, F., Maris, F., Régnier, P.: A simple account of multi-agent epistemic planning. In: Kaminka, G.A., et al. (eds.) ECAI 2016–22nd European Conference on Artificial Intelligence, The Hague, The Netherlands, 29 August–2 September 2016, Volume 285 of Frontiers in Artificial Intelligence and Applications, pp. 193–201. IOS Press (2016)Google Scholar
  10. [CS15]
    Charrier, T., Schwarzentruber, F.: Arbitrary public announcement logic with mental programs. In: Weiss, G., Yolum, P., Bordini, R.H., Elkind, E. (eds.) Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2015, Istanbul, Turkey, 4–8 May 2015, pp. 1471–1479. ACM (2015)Google Scholar
  11. [CS17]
    Charrier, T., Schwarzentruber, F.: A succinct language for dynamic epistemic logic. In: Larson, K., Winikoff, M., Das, S., Durfee, E.H. (eds.) Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017, São Paulo, Brazil, 8–12 May 2017, pp. 123–131. ACM (2017)Google Scholar
  12. [DHS05]
    Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of secure information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS, vol. 3450, pp. 193–209. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-32004-3_20CrossRefGoogle Scholar
  13. [FHR19]
    Feuillade, G., Herzig, A., Rantsoudis, C.: A dynamic logic account of active integrity constraints. Fundamenta Informaticae 169(3), 179–210 (2019)MathSciNetCrossRefGoogle Scholar
  14. [Gol92]
    Goldblatt, R.: Parallel action: concurrent dynamic logic with independent modalities. Studia Logica 51(3/4), 551–578 (1992)MathSciNetCrossRefGoogle Scholar
  15. [GY04]
    Gardner, P., Yoshida, N. (eds.): CONCUR 2004 - Concurrency Theory, 15th International Conference, London, UK, August 31 – 3 September 2004, Proceedings, Volume 3170 of Lecture Notes in Computer Science. Springer, Heidelberg (2004)Google Scholar
  16. [Her13]
    Herzig, A.: A simple separation logic. In: Libkin, L., Kohlenbach, U., de Queiroz, R. (eds.) WoLLIC 2013. LNCS, vol. 8071, pp. 168–178. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39992-3_16CrossRefzbMATHGoogle Scholar
  17. [Her14]
    Herzig, A.: Belief change operations: a short history of nearly everything, told in dynamic logic of propositional assignments. In: Baral, C., De Giacomo, G. (eds.) Proceedings of KR 2014. AAAI Press (2014)Google Scholar
  18. [HMNDBW14]
    Herzig, A., Menezes, V., De Barros, L.N., Wassermann, R.: On the revision of planning tasks. In: Schaub, T. (ed.) European Conference on Artificial Intelligence (ECAI), August 2014Google Scholar
  19. [HMV19]
    Herzig, A., Maris, F., Vianey, J.: Dynamic logic of parallel propositional assignments and its applications to planning. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, 10–16 August 2019, pp. 5576–5582. ijcai.org (2019)Google Scholar
  20. [MS96]
    Mayer, A.J., Stockmeyer, L.J.: The complexity of PDL with interleaving. Theor. Comput. Sci. 161(1&2), 109–122 (1996)MathSciNetCrossRefGoogle Scholar
  21. [NGH18]
    Novaro, A., Grandi, U., Herzig, A.: Judgment aggregation in dynamic logic of propositional assignments. J. Log. Comput. 28(7), 1471–1498 (2018)MathSciNetCrossRefGoogle Scholar
  22. [O’H04]
    O’Hearn, P.W.: Resources, concurrency and local reasoning. Gardner and Yoshida, pp. 49–67Google Scholar
  23. [Pel87]
    Peleg, D.: Concurrent dynamic logic. J. ACM 34(2), 450–479 (1987)MathSciNetCrossRefGoogle Scholar
  24. [SG16]
    Scheben, C., Greiner, S.: Information flow analysis. Deductive Software Verification – The KeY Book. LNCS, vol. 10001, pp. 453–471. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49812-6_13CrossRefGoogle Scholar
  25. [vDvdHK07]
    van Ditmarsch, H.P., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Kluwer Academic Publishers (2007)Google Scholar
  26. [VVB14]
    Veloso, P.A.S., Veloso, S.R.M., Benevides, M.R.F.: PDL for structured data: a graph-calculus approach. Logic J. IGPL 22(5), 737–757 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Joseph Boudou
    • 1
  • Andreas Herzig
    • 1
    Email author
  • Nicolas Troquard
    • 2
  1. 1.IRIT, CNRSToulouseFrance
  2. 2.Free University of Bozen-BolzanoBolzanoItaly

Personalised recommendations