Mechanizing Bisimulation Theorems for Relation-Changing Logics in Coq

  • Raul FervariEmail author
  • Francisco Trucco
  • Beta Ziliani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12005)


Over the last years, the study of logics that can modify a model while evaluating a formula has gained in interest. Motivated by many examples in practice such as hybrid logics, separation logics and dynamic epistemic logics, the ability of updating a model has been investigated from a more general point of view. In this work, we formalize and verify in the proof assistant Coq, the bisimulation theorems for a particular family of dynamic logics that can change the accessibility relation of a model. The benefits of this formalization are twofold. First, our results apply for a wide variety of dynamic logics. Second, we argue that this is the first step towards the development of a modal logic library in Coq, which allows us to mechanize many relevant results in modal logics.



This work was partially supported by ANPCyT-PICTs-2017-1130 and 2016-0215, MinCyT Córdoba, SeCyT-UNC, and the Laboratoire International Associé INFINIS.


  1. 1.
    Areces, C., Fervari, R., Hoffmann, G.: Moving arrows and four model checking results. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 142–153. Springer, Heidelberg (2012). Scholar
  2. 2.
    Areces, C., Fervari, R., Hoffmann, G.: Swap logic. Log. J. IGPL 22(2), 309–332 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Areces, C., Fervari, R., Hoffmann, G.: Relation-changing modal operators. Log. J. IGPL 23(4), 601–627 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Areces, C., Fervari, R., Hoffmann, G., Martel, M.: Satisfiability for relation-changing logics. J. Log. Comput. 28(7), 1443–1470 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Areces, C., Figueira, D., Figueira, S., Mera, S.: The expressive power of memory logics. Rev. Symb. Log. 4(2), 290–318 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., Wolter, F., van Benthem, J. (eds.) Handbook of Modal Logic, pp. 821–868. Elsevier, Amsterdam (2007)CrossRefGoogle Scholar
  7. 7.
    Aucher, G., Balbiani, P., Fariñas del Cerro, L., Herzig, A.: Global and local graph modifiers. ENTCS 231, 293–307 (2009)MathSciNetGoogle Scholar
  8. 8.
    Aucher, G., van Benthem, J., Grossi, D.: Modal logics of sabotage revisited. JLC 28(2), 269–303 (2018)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development: Coq’Art The Calculus of Inductive Constructions, 1st edn. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  10. 10.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  11. 11.
    Blackburn, P., van Benthem, J.: Modal logic: a semantic perspective. In: Handbook of Modal Logic, pp. 1–84. Elsevier (2007)Google Scholar
  12. 12.
    Bohrer, B., Platzer, A.: Toward structured proofs for dynamic logics. CoRR, abs/1908.05535 (2019)Google Scholar
  13. 13.
    D’Abrera, C., Goré, R.: Verified synthesis of (very simple) Sahlqvist correspondents via Coq. In: AiML 2018, Short Presentations, pp. 26–30. College Publications (2018)Google Scholar
  14. 14.
    de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). Scholar
  15. 15.
    de Wind, P.: Modal Logic in Coq. Vrije Universiteit, Amsterdam (2001)Google Scholar
  16. 16.
    Demri, S., Fervari, R.: On the complexity of modal separation logics. In: AiML 2018, pp. 179–198. College Publications (2018)Google Scholar
  17. 17.
    Demri, S., Fervari, R., Mansutti, A.: Axiomatising logics with separating conjunction and modalities. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS (LNAI), vol. 11468, pp. 692–708. Springer, Cham (2019). Scholar
  18. 18.
    Fervari, R.: Relation-Changing Modal Logics. Ph.D. thesis, Universidad Nacional de Córdoba, Argentina (2014)Google Scholar
  19. 19.
    Fervari, R., Velázquez-Quesada, F.R.: Dynamic epistemic logics of introspection. In: Madeira, A., Benevides, M. (eds.) DALI 2017. LNCS, vol. 10669, pp. 82–97. Springer, Cham (2018). Scholar
  20. 20.
    Fervari, R., Velázquez-Quesada, F.R.: Introspection as an action in relational models. JLAMP 108, 1–23 (2019)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Girard, P., Seligman, J., Liu, F.: General dynamic dynamic logic. In: AiML 2012, pp. 239–260. College Publications (2012)Google Scholar
  22. 22.
    Gonthier, G.: Formal proof – the four-color theorem (2008)Google Scholar
  23. 23.
    Hales, T.C., et al.: A formal proof of the kepler conjecture. Forum Math. Pi 5, e2 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Harel, D.: Dynamic Logic. Foundations of Computing. The MIT Press, Cambridge (2000)CrossRefGoogle Scholar
  25. 25.
    Howard, W.A.: The formulae-as-types notion of construction. To HB Curry: Essays Combin. Log. Lambda Calc. Formalism 44, 479–490 (1980)Google Scholar
  26. 26.
    Kripke, S.: Semantical analysis of modal logic I. Normal propositional calculi. Z. fur Math. Log. Grundlagen der Math. 9, 67–96 (1963)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Löding, C., Rohde, P.: Model checking and satisfiability for sabotage modal logic. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 302–313. Springer, Heidelberg (2003). Scholar
  28. 28.
    Mitsch, S., Platzer, A.: The keymaera X proof IDE - concepts on usability in hybrid systems theorem proving. In: F-IDE@FM 2016. EPTCS, vol. 240, pp. 67–81 (2016)CrossRefGoogle Scholar
  29. 29.
    Paulson, L.C. (ed.): Isabelle: A Generic Theorem Prover, vol. 828. Springer, Heidelberg (1994). Scholar
  30. 30.
    Pym, D., Spring, J., O’Hearn, P.W.: Why separation logic works. Philos. Technol. 32(3), 483–516 (2019)CrossRefGoogle Scholar
  31. 31.
    Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: LICS 2002, pp. 55–74. IEEE (2002)Google Scholar
  32. 32.
    Rohde, P.: On games and logics over dynamically changing structures. Ph.D. thesis, RWTH Aachen (2006)Google Scholar
  33. 33.
    Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg (2008). CrossRefGoogle Scholar
  34. 34.
    Benthem, J.: An essay on sabotage and obstruction. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 268–276. Springer, Heidelberg (2005). Scholar
  35. 35.
    van Benthem, J., Liu, F.: Dynamic logic of preference upgrade. J. Appl. Non-Class. Log. 17(2), 157–182 (2007)MathSciNetCrossRefGoogle Scholar
  36. 36.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic epistemic logic with assignment. In: AAMAS 2005, pp. 141–148. ACM (2005)Google Scholar
  37. 37.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese Library. Springer, Heidelberg (2007). Scholar
  38. 38.
    Wu, M., Goré, R.: Verified decision procedures for modal logics. In: ITP 2019. LIPIcs, vol. 141, pp. 31:1–31:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)Google Scholar
  39. 39.
    Xavier, B., Olarte, C., Reis, G., Nigam, V.: Mechanizing focused linear logic in Coq. ENTCS 338, 219–236 (2018)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Raul Fervari
    • 1
    • 2
    Email author
  • Francisco Trucco
    • 1
  • Beta Ziliani
    • 1
    • 2
  1. 1.FaMAFUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina

Personalised recommendations