Multi-criteria Production Theory: Foundation of Performance Evaluation

  • Harald DyckhoffEmail author
  • Rainer Souren
Part of the SpringerBriefs in Business book series (BRIEFSBUSINESS)


Multi-criteria production theory (MCPT) is a decision-theoretical generalisation of traditional production theories developed in order to integrate concerns of modern management science and economics, such as sustainability and environmental protection. Its main idea is to distinguish between the technologically determined inputs and outputs of a production system’s activity and their desired or undesired impacts on artificial or natural environments. This is formalised by multiple value functions mapping the production possibility set (PPS) onto the value possibility set (VPS). Depending on the concretisation of the relevant objectives different kinds of economic, ecological or social concerns can be captured and analysed in view of the performance of the possible production activities as the decision alternatives at hand. Chapter 2 proves main theorems of MCPT and discusses the fundamentality of some axioms used in traditional production theories. The theorems are concerned with sufficient conditions for certain properties of the VPS, in particular its convexity or linearity. Furthermore, a monotonicity result for a hierarchy of valuations is derived. While an axiom of value disposability is plausible and helps to guarantee the convexity of the VPS, other axioms do not seem to be realistic or better must refer to the costs and benefits instead of the inputs and outputs.


Disposability Efficiency Production possibility set Production theory Value function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afsharian M, Ahn H, Neumann L (2016) Generalized DEA – An approach for supporting input/output factor determination in DEA. Benchmarking: An International Journal 23:1892–1909Google Scholar
  2. Agrell PJ, Hatami-Marbini A (2013) Frontier-based performance analysis models for supply chain management: State of the art and research directions. Computers & Industrial Engineering 66:567–583Google Scholar
  3. Avkiran NK, Parker BR (2010) Pushing the DEA research envelope. Socio-Economic Planning Sciences 44:1–7CrossRefGoogle Scholar
  4. Baumgärtner S, Dyckhoff H, Faber M, Proops J, Schiller J (2001) The concept of joint production and ecological economics. Ecological Economics 36:365–372CrossRefGoogle Scholar
  5. Bogetoft P, Hougaard JL (2003) Rational inefficiencies. Journal of Productivity Analysis 20:243–271CrossRefGoogle Scholar
  6. Dakpo KH, Jeanneaux P, Latruffe L (2016) Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric framework. European Journal of Operational Research 250:347–359CrossRefGoogle Scholar
  7. Dano S (1966) Industrial Production Models. Springer, Wien/New YorkCrossRefGoogle Scholar
  8. Dinkelbach W, Rosenberg O (2004) Erfolgs- und umweltorientierte Produktionstheorie. 5th ed, Springer, Berlin et al.CrossRefGoogle Scholar
  9. Dyckhoff H (1992) Betriebliche Produktion: Theoretische Grundlagen einer umweltorientierten Produktionswirtschaft. Springer, Berlin et al.CrossRefGoogle Scholar
  10. Dyckhoff H (2003) Neukonzeption der Produktionstheorie. Zeitschrift für Betriebswirtschaft 73:705–732Google Scholar
  11. Dyckhoff H (2018) Multi-criteria production theory: Foundation of non-financial and sustainability performance evaluation. Journal of Business Economics 88:851–882 (DOI:10.1007/s11573-017-0885-1; open access)CrossRefGoogle Scholar
  12. Dyckhoff H (2019) Multi-criteria production theory: Convexity propositions and reasonable axioms. Journal of Business Economics 89:719–735CrossRefGoogle Scholar
  13. Dyckhoff H, Ahn H (2001) Sicherstellung der Effektivität und Effizienz der Führung als Kernfunktion des Controlling. Kostenrechnungspraxis 45:111−121CrossRefGoogle Scholar
  14. Dyckhoff H, Ahn H (2010) Verallgemeinerte DEA-Modelle zur Performanceanalyse. Zeitschrift für Betriebswirtschaft 80:1249–1276CrossRefGoogle Scholar
  15. Dyckhoff H, Allen K (2001) Measuring ecological efficiency with Data Envelopment Analysis (DEA). European Journal of Operational Research 132:312–325CrossRefGoogle Scholar
  16. Dyckhoff H, Gehring H (1988) Trim loss and inventory planning in a small textile firm. In: Fandel G, Dyckhoff H, Reese J (ed): Essays on Production Theory and Planning. Springer, Berlin/Heidelberg, pp 181–190CrossRefGoogle Scholar
  17. Dyckhoff H, Spengler T (2010) Produktionswirtschaft. 3rd ed, Springer, Berlin et al.CrossRefGoogle Scholar
  18. Dyson RG, Allen R, Camanho AS, Podinovski VV, Sarrico CC, Shale EA (2001) Pitfalls and protocols in DEA. European Journal of Operational Research 132:245–259CrossRefGoogle Scholar
  19. Eisenführ F, Weber M, Langer T (2010) Rational Decision Making. Springer, Berlin et al.CrossRefGoogle Scholar
  20. Esser J (2001) Entscheidungstheoretische Erweiterung der Produktionstheorie. Peter Lang, Frankfurt a. M.Google Scholar
  21. Fandel G (2009) (ed) Rational Inefficiencies. Zeitschrift für Betriebswirtschaft, Special Issue 4/2009. Gabler, WiesbadenGoogle Scholar
  22. Fandel G (2010) Produktions- und Kostentheorie. 8th ed, Springer, Berlin et al.Google Scholar
  23. Fandel G, Lorth M (2009) On the technical (in)efficiency of a profit maximum. International Journal of Production Economics 121:409–426CrossRefGoogle Scholar
  24. Fandel G, Lorth M (2010) Technische Ineffizienz als Ergebnis rationalen Entscheidungsverhaltens. Zeitschrift für Betriebswirtschaft 80:477–494CrossRefGoogle Scholar
  25. Färe R, Grosskopf S (1996) Intertemporal Production Frontiers: With Dynamic DEA. Kluwer, Boston et al.CrossRefGoogle Scholar
  26. Frisch R (1965) Theory of Production. D. Reidel Publ., DordrechtCrossRefGoogle Scholar
  27. Gutenberg E (1951) Grundlagen der Betriebswirtschaftslehre. Band I: Die Produktion. 24th ed, 1983, Springer, BerlinCrossRefGoogle Scholar
  28. Hasenkamp G (1992) Multiple objectives in the theory of the firm. Journal of Productivity Analysis 3:323–335CrossRefGoogle Scholar
  29. Koopmans TC (1951) Analysis of production as an efficient combination of activities. In:Google Scholar
  30. Koopmans TC (ed) Activity Analysis of Production and Allocation. J. Wiley & Sons, New York, pp 33–97Google Scholar
  31. Kuosmanen T, Kortelainen M (2005) Measuring eco-efficiency of production with Data Envelopment Analysis. Journal of Industrial Ecology 9:59–72CrossRefGoogle Scholar
  32. Liu W, Meng W, Li X, Zhang DQ (2010) DEA models with undesirable inputs and outputs. Annals of Operations Research 173:177–194CrossRefGoogle Scholar
  33. Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013): Anthropogenic and Natural Radiative Forcing. In: Change Stocker, TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate. Cambridge University Press, Cambridge/New York, pp 659–740Google Scholar
  34. Shephard RW (1970) Theory of Cost and Production Functions. Princeton Univ. Press, Princeton NJGoogle Scholar
  35. Souren R (1996) Theorie betrieblicher Reduktion. Physica, HeidelbergCrossRefGoogle Scholar
  36. Wojcik V, Dyckhoff H, Gutgesell S (2017) The desirable input of undesirable factors in Data Envelopment Analysis. Annals of Operations Research 259:461–484CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Business and EconomicsRWTH Aachen UniversityRheineGermany
  2. 2.Group of Sustainable Production and Logistics ManagementIlmenau University of TechnologyIlmenauGermany

Personalised recommendations