Interpretation, Modeling, and Visualization of Crowdsourced Road Condition Data

  • Pekka SillbergEmail author
  • Mika Saari
  • Jere Grönman
  • Petri Rantanen
  • Markku Kuusisto
Part of the Studies in Computational Intelligence book series (SCI, volume 864)


Nowadays almost everyone has a mobile phone and even the most basic smartphones often come embedded with a variety of sensors. These sensors, in combination with a large user base, offer huge potential in the realization of crowdsourcing applications. The crowdsourcing aspect is of interest especially in situations where users’ everyday actions can generate data usable in more complex scenarios. The research goal in this paper is to introduce a combination of models for data gathering and analysis of the gathered data, enabling effective data processing of large data sets. Both models are applied and tested in the developed prototype system. In addition, the paper presents the test setup and results of the study, including a description of the web user interface used to illustrate road condition data. The data were collected by a group of users driving on roads in western Finland. Finally, it provides a discussion on the challenges faced in the implementation of the prototype system and a look at the problems related to the analysis of the collected data. In general, the collected data were discovered to be more useful in the assessment of the overall condition of roads, and less useful for finding specific problematic spots on roads, such as potholes.


Models Data gathering Data analysis Visualization Sensors Mobile devices 


  1. 1.
    M. Krommyda, E. Sdongos, S. Tamascelli, A. Tsertou, G. Latsa, A. Amditis, Towards citizen-powered cyberworlds for environmental monitoring, in 2018 International Conference on Cyberworlds (CW) (2018) pp. 454–457Google Scholar
  2. 2.
    K.I. Satoto, E.D. Widianto, S. Sumardi, Environmental health monitoring with smartphone application, in 2018 5th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE) (2018), pp. 281–286Google Scholar
  3. 3.
    P. Pyykonen, J. Laitinen, J. Viitanen, P. Eloranta, T. Korhonen, IoT for intelligent traffic system, in 2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP) (2013), pp. 175–179Google Scholar
  4. 4.
    Yle Uutiset: Lapin Ely lupaa vähemmän lunta ja polanteita – Bussinkuljettajat keräävät tietoa Lapin teiden kunnosta. (2016) Retrieved 27th June 2018
  5. 5.
    O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker, A. Bassi, I. Jubert, M. Mazura, M. Harrison, M. Eisenhauer, P. Doody, Internet of Things Strategic Research Roadmap. (2009). Retrieved 23rd Mar. 2019
  6. 6.
    A. Hać, Wireless Sensor Network Designs (Wiley, Chichester, 2003)CrossRefGoogle Scholar
  7. 7.
    J. Grönman, P. Rantanen, M. Saari, P. Sillberg, H. Jaakkola, Lessons Learned from Developing Prototypes for Customer Complaint Validation. Software Quality Analysis, Monitoring, Improvement, and Applications (SQAMIA), Serbia (August 2018)Google Scholar
  8. 8.
    P. Rantanen, P. Sillberg, J. Soini, Towards the utilization of crowdsourcing in traffic condition reporting, in 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Croatia (2017), pp. 985–990Google Scholar
  9. 9.
    M. Ma, P. Wang, C.-H. Chu, Data management for internet of things: challenges, approaches and opportunities, in 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing (2013), pp. 1144–1151Google Scholar
  10. 10.
    P. Sillberg, Toward manageable data sources. Inf. Modell. Knowl. Bases XXX. Front. Artif. Intell. Appl. 312, 101–111 (2019) (IOS Press)Google Scholar
  11. 11.
    P. Sillberg, J. Grönman, P. Rantanen, M. Saari, M. Kuusisto, Challenges in the interpretation of crowdsourced road condition data, in International Conference on Intelligent Systems (IS) (2018)Google Scholar
  12. 12.
    Howe, J.: The Rise of Crowdsourcing. (2006). Retrieved 27th June 2018
  13. 13.
    D.C. Brabham, Crowdsourcing as a model for problem solving. Convergence: Int. J. Res. New Media Technol. 14(1), 75–90 (2008)Google Scholar
  14. 14.
    K. Mao, L. Capra, M. Harman, Y. Jia, A Survey of the Use of Crowdsourcing in Software Engineering. Technical Report RN/15/01, Department of Computer Science, University College London (2015)Google Scholar
  15. 15.
    C.-W. Yi, Y.-T. Chuang, C.-S. Nian, Toward crowdsourcing-based road pavement monitoring by mobile sensing technologies. IEEE Trans. Intell. Transp. Syst. 16(4), 1905–1917 (2015)CrossRefGoogle Scholar
  16. 16.
    Y.A. Alqudah, B.H. Sababha, On the analysis of road surface conditions using embedded smartphone sensors, in 2017 8th International Conference on Information and Communication Systems (ICICS), Jordan (2017), pp. 177–181Google Scholar
  17. 17.
    F. Carrera, S. Guerin, J.B. Thorp, By the people, for the people: the crowdsourcing of “STREETBUMP”: an automatic pothole mapping app. Int. Arch. Photogrammetry Remote Sens. Spat. Inf. Sci. (ISPRS), XL-4/W1 (4W1), 19–23 (2013)Google Scholar
  18. 18.
    J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, H. Balakrishnan, The pothole patrol, in Proceedings of the 6th International Conference on Mobile systems, applications, and services—MobiSys ’08, Colorado, USA (2008), p. 29Google Scholar
  19. 19.
    K. Chen, M. Lu, G. Tan, J. Wu, CRSM: crowdsourcing based road surface monitoring, in 2013 IEEE 10th International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing, China (2013), pp. 2151–2158Google Scholar
  20. 20.
    G. Alessandroni, L. Klopfenstein, S. Delpriori, M. Dromedari, G. Luchetti, B. Paolini, A. Seraghiti, E. Lattanzi, V. Freschi, A. Carini, A. Bogliolo, A, SmartRoadSense: collaborative road surface condition monitoring, in The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies (UBICOMM), Italy (2014)Google Scholar
  21. 21.
    V. Dyo, Middleware design for integration of sensor network and mobile devices, in Proceedings of the 2nd International Doctoral Symposium on Middleware—DSM ’05, New York, USA. ACM Press (2005), pp. 1–5Google Scholar
  22. 22.
    T. Leppanen, M. Perttunen, J. Riekki, P. Kaipio, Sensor network architecture for cooperative traffic applications, in 2010 6th International Conference on Wireless and Mobile Communications (2010), pp. 400–403Google Scholar
  23. 23.
    I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)CrossRefGoogle Scholar
  24. 24.
    M. Saari, A.M. Baharudin, P. Sillberg, P. Rantanen, J. Soini, Embedded Linux controlled sensor network, in 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (2016), pp. 1185–1189Google Scholar
  25. 25.
    M. Saari, P. Sillberg, P. Rantanen, J. Soini, H. Fukai, Data collector service—practical approach with embedded linux, in 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (2015), pp. 1037–1041Google Scholar
  26. 26.
    A.M. Baharudin, M. Saari, P. Sillberg, P. Rantanen, J. Soini, T. Kuroda, Low-energy algorithm for self-controlled wireless sensor nodes, in 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM), pp. 42–46 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Pekka Sillberg
    • 1
    Email author
  • Mika Saari
    • 1
  • Jere Grönman
    • 1
  • Petri Rantanen
    • 1
  • Markku Kuusisto
    • 1
  1. 1.Faculty of Information Technology and Communication SciencesTampere UniversityPoriFinland

Personalised recommendations