Optical Cryptosystem Using Chaotic/Hyperchaotic System

  • Hang ChenEmail author
  • Zhengjun Liu
  • Feifei Liu
  • Camel Tanougast
  • Walter Blondel
Part of the Studies in Computational Intelligence book series (SCI, volume 884)


The security is a significant topic in transmission and management of pictures, while encryption is an effective method for protecting the secret images. In recent years, the chaotic/hyperchaotic system has been thoroughly developed in image encryption area due to its high randomness. In this chapter, the optical cryptosystems based on chaotic/hyperchaotic system are expressed in detail. We starts with the brief introduction of various chaotic/hyperchaotic systems, then several optical cryptosystems based on the chaotic/hyperchaotic map are expressed in detail. Some experiments are made to verify the security and robustness of these schemes.


Optical image encryption Cryptography Hyperchaotic system 


  1. 1.
    Zhang Y, Tang Y (2018) A plaintext-related image encryption algorithm based on chaos. Multimed Tools Appl 77(6):6647–6669CrossRefGoogle Scholar
  2. 2.
    Zhao T, Ran Q, Yuan L (2016) Information verification cryptosystem using one-time keys based on double random phase encoding and public-key cryptography. Opt Lasers Eng 83:48–58CrossRefGoogle Scholar
  3. 3.
    Murillo-Escobar MA, Cruz-Hernández C, Abundiz-Pérez F (2015) A RGB image encryption algorithm based on total plain image characteristics and chaos. Sig Process 109:119–131CrossRefGoogle Scholar
  4. 4.
    Han C (2019) An image encryption algorithm based on modified logistic chaotic map. Optik 181:779–785CrossRefGoogle Scholar
  5. 5.
    Xiao D, Wang L, Xiang T et al (2017) Multi-focus image fusion and robust encryption algorithm based on compressive sensing. Opt Laser Technol 91:212–225CrossRefGoogle Scholar
  6. 6.
    Roy A, Misra AP, Banerjee S (2019) Chaos-based image encryption using vertical-cavity surface-emitting lasers. Optik 176:119–131CrossRefGoogle Scholar
  7. 7.
    Carroll TL, Pecora LM (1991) Synchronizing chaotic circuits. IEEE Trans Circ Syst 38(4):453–456CrossRefGoogle Scholar
  8. 8.
    Chen H (2017) Optical encryption techniques for color image and hyperspectral data. Université de LorraineGoogle Scholar
  9. 9.
    Guo Q, Liu Z, Liu S (2010) Color image encryption by using Arnold and discrete fractional random transforms in IHS space. Opt Lasers Eng 48(12):1174–1181CrossRefGoogle Scholar
  10. 10.
    Arnol’d VI, Avez A (1968) Ergodic problems of classical mechanicsGoogle Scholar
  11. 11.
    Dyson FJ, Falk H (1992) Period of a discrete cat mapping. Am Math Mon 99(7):603–614MathSciNetCrossRefGoogle Scholar
  12. 12.
    Deng X, Zhao D (2011) Color component 3D Arnold transform for polychromatic pattern recognition. Opt Commun 284(24):5623–5629CrossRefGoogle Scholar
  13. 13.
    Fridrich J (1998) Symmetric ciphers based on two-dimensional chaotic maps. Int J Bifurc Chaos 8(06):1259–1284MathSciNetCrossRefGoogle Scholar
  14. 14.
    Liu Z, Li S, Liu W et al (2013) Opto-digital image encryption by using Baker mapping and 1-D fractional Fourier transform. Opt Lasers Eng 51(3):224–229CrossRefGoogle Scholar
  15. 15.
    Gao Y, Liu B (2009) Study on the dynamical behaviors of a two-dimensional discrete system. Nonlinear Anal 70(12):4209–4216MathSciNetCrossRefGoogle Scholar
  16. 16.
    Chirikov BV (1971) Research concerning the theory of non-linear resonance and stochasticity. CM-P00100691Google Scholar
  17. 17.
    Chee C, Xu D (2005) Secure digital communication using controlled projective synchronisation of chaos. Chaos Soliton Fract 23:1063–1070CrossRefGoogle Scholar
  18. 18.
    Lin J, Huang C, Liao T, Yan J (2010) Design and implementation of digital secure communication based on synchronized chaotic systems. Digit Signal Process 20:229–237CrossRefGoogle Scholar
  19. 19.
    Zhu C (2012) A novel image encryption scheme based on improved hyperchaotic sequences. Opt Commun 285:29–37CrossRefGoogle Scholar
  20. 20.
    Refregier P, Javidi B (1995) Optical image encryption based on input plane and Fourier plane random encoding. Opt Lett 20(7):767–769CrossRefGoogle Scholar
  21. 21.
    Liu S, Guo C, Sheridan JT (2014) A review of optical image encryption techniques. Opt Laser Technol 57:327–342CrossRefGoogle Scholar
  22. 22.
    Peng X, Zhang P, Wei H et al (2006) Known-plaintext attack on optical encryption based on double random phase keys. Opt Lett 31(8):1044–1046CrossRefGoogle Scholar
  23. 23.
    Peng X, Wei H, Zhang P (2006) Chosen-plaintext attack on lensless double-random phase encoding in the Fresnel domain. Opt Lett 31(22):3261–3263CrossRefGoogle Scholar
  24. 24.
    Chen H, Du X, Liu Z (2016) Optical hyperspectral data encryption in spectrum domain by using 3D Arnold and gyrator transforms. Spectrosc Lett 49(2):103–107CrossRefGoogle Scholar
  25. 25.
    Rodrigo JA, Alieva T, Calvo ML (2007) Experimental implementation of the gyrator transform. J Opt Soc Am A 24:3135–3139CrossRefGoogle Scholar
  26. 26.
    Chen H, Zhao J, Liu Z, Du X (2015) Opto-digital spectrum encryption by using Baker mapping and gyrator transform. Opt Lasers Eng 66:285–293CrossRefGoogle Scholar
  27. 27.
    Chen H, Du X, Liu Z (2016) Optical spectrum encryption in associated fractional Fourier transform and gyrator transform domain. Opt Quant Electron 48(1):12CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hang Chen
    • 1
    • 2
    • 3
    Email author
  • Zhengjun Liu
    • 4
  • Feifei Liu
    • 1
  • Camel Tanougast
    • 3
  • Walter Blondel
    • 2
  1. 1.School of Electrical Engineering and AutomationJiangxi University of Science and TechnologyGanzhouChina
  2. 2.CNRS UMR 7039 Centre de Recherche en Automatique de NancyUniversity de LorraineMetzFrance
  3. 3.Laboratoire de Conception, Optimisation et Modelisation des SystemsUniversity de LorraineMetzFrance
  4. 4.Department of Automation Measurement and ControlHarbin Institute of TechnologyHarbinChina

Personalised recommendations