• Neophytos NeophytouEmail author
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


Thermoelectric materials convert heat through temperature gradients into electricity, and vice versa provide cooling capabilities once a potential difference is applied across them. This brief describes important aspects of the theory and numerical simulations that are undertaken in describing electro-thermal transport in complex bandstructure and nanostructured materials, aiming to assist the design of advanced thermoelectric materials.


  1. 1.
    Beretta, D., Neophytou, N., Hodges, J.M., Kanatzidis, M., Narducci, D., Martin-Gonzalez, M., Beekman, M., Balke, B., Cerretti, G., Tremel, W., Zevalkink, A., Hofmann, A.I., Müller, C., Dörling, B., Campoy-Quiles, M. & Caironia, M.: Thermoelectrics: from history, a window to the future. Mater. Sci. Eng. R 138, 210–255 (2019)Google Scholar
  2. 2.
    Lei, C., Burton, M.R., Nandhakumar, I.S.: Facile production of thermoelectric bismuth telluride thick films in the presence of polyvinyl alcohol. Phys. Chem. Chem. Phys. 18(21), 14164–14167 (2016)CrossRefGoogle Scholar
  3. 3.
    Mele, P., Narducci, D., Ohta, M., Biswas, K., Morante, J.R., Saini, S., Endo, T. (eds.): Thermoelectric Thin Films: Materials and Devices. Springer (2019)Google Scholar
  4. 4.
    Koumoto, K., Mori, T.: Thermoelectric Nanomaterials. Springer (2015)Google Scholar
  5. 5.
    Liu, W., Hu, J., Zhang, S., Deng, M., Han, C.G., Liu, Y.: New trends, strategies and opportunities in thermoelectric materials: a perspective. Mater. Today Phys. 1, 50–60 (2017)CrossRefGoogle Scholar
  6. 6.
    Goldsmid, H.J.: Introduction to Thermoelectricity, pp. 9–24. Heidelberg (2016)Google Scholar
  7. 7.
    Neophytou, N., Zianni, X., Kosina, H., Frabboni, S., Lorenzi, B., Narducci, D.: Nanotechnology 24, 205402 (2013)CrossRefGoogle Scholar
  8. 8.
    Biswas, K., He, J., Blum, I.D., Wu, C.-I., Hogan, T.P., Seidman, D.N., Dravid, V.P., Kanatzidis, M.G.: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012)CrossRefGoogle Scholar
  9. 9.
    Hattori, K., Miyazaki, H., Yoshida, K., Inukai, M., Nishino, Y.: Direct observation of the electronic structure in thermoelectric half-heusler alloys zr1–x m x nisn (m = y and nb). J. App. Phys.117, 205102 (2015)CrossRefGoogle Scholar
  10. 10.
    Perez-Taborda, J.A., Rojo, M.M., Maiz, J., Neophytou, N., Martin-Gonzalez, M.: Ultra-low thermal conductivities in large-area Si-Ge nanomeshes for thermoelectric applications. Sci. Rep. 6, 32778 (2016)Google Scholar
  11. 11.
    Yokobori, T., Okawa, M., Konishi, K., Takei, R., Katayama, K., Oozono, S., Shinmura, T., Okuda, T., Wadati, H., Sakai, E., Ono, K.: Electronic structure of the hole-doped delafossite oxides CuCr1−xMgxO2. Phys. Rev. B 87, 195124 (2013)Google Scholar
  12. 12.
    Lu, X., Morelli, D.T., Wang, Y., Lai, W., Xia, Y., Ozolins, V.: Phase stability, crystal structure, and thermoelectric properties of Cu12Sb4S13–xSex solid solutions. Chem. Mater. 28(6), 1781–1786 (2016)CrossRefGoogle Scholar
  13. 13.
    Lu, X., Morelli, D.T., Xia, Y., Ozolins, V.: Increasing the thermoelectric figure of merit of tetrahedrites by Co-doping with nickel and zinc. Chem. Mater. 27(2), 408–413 (2015)CrossRefGoogle Scholar
  14. 14.
    Xi, L., Zhang, Y.B., Shi, X.Y., Yang, J., Shi, X., Chen, L.D., Zhang, W., Yang, J., Singh, D.J.: Chemical bonding, conductive network, and thermoelectric performance of the ternary semiconductors Cu2SnX3 (X = Se, S) from first principles. Phys. Rev. B 86(15), 155201 (2012)Google Scholar
  15. 15.
    Flage-Larsen, E., Diplas, S., Prytz, Ø., Toberer, E.S., May, A.F.: Valence band study of thermoelectric Zintl-phase SrZn2Sb2 and YbZn2Sb2: X-ray photoelectron spectroscopy and density functional theory. Phys. Rev. B 81(20), 205204 (2010)Google Scholar
  16. 16.
    Neophytou, N., Wagner, M., Kosina, H., Selberherr, S.: Analysis of thermoelectric properties of scaled silicon nanowires using an atomistic tight-binding model. J. Electr. Mater. 39(9), 1902–1908 (2010)CrossRefGoogle Scholar
  17. 17.
    van Schilfgaarde, M., Kotani, T., Faleev, S.: Quasiparticle self-consistent g w theory. Phys. Rev. Lett. 96(22), 226402 (2006)Google Scholar
  18. 18.
    Cheng, L., Liu, H.J., Zhang, J., Wei, J., Liang, J.H., Jiang, P.H., Fan, D.D., Sun, L., Shi, J.: High thermoelectric performance of the distorted bismuth (110) layer. Phys. Chem. Chem. Phys. 18(26), 17373–17379 (2016)CrossRefGoogle Scholar
  19. 19.
    Kresse, G., Furthmüller, J., Hafner, J.: Ab initio force constant approach to phonon dispersion relations of diamond and graphite. EPL (Europhys. Lett.) 32(9), 729 (1995)CrossRefGoogle Scholar
  20. 20.
    Parlinski, K., Li, Z.Q., Kawazoe, Y.: Parlinski, Li, and Kawazoe reply. Phys. Rev. Lett. 81(15), 3298 (1998)CrossRefGoogle Scholar
  21. 21.
    Giannozzi, P., De Gironcoli, S., Pavone, P., Baroni, S.: Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B 43(9), 7231 (1991)CrossRefGoogle Scholar
  22. 22.
    Gonze, X., Beuken, J.M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G.M., Sindic, L., Verstraete, M., Zerah, G., Jollet, F., Roy, A., Mikami, M., Ghosez, P., Raty, J.Y., Allan, D.C., Torrent, M.: First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25(3), 478–492 (2002)CrossRefGoogle Scholar
  23. 23.
    Kong, L.T.: Phonon dispersion measured directly from molecular dynamics simulations. Comput. Phys. Commun. 182(10), 2201–2207 (2011)CrossRefGoogle Scholar
  24. 24.
    Kang, J., Wang, L.W.: First-principles Green-Kubo method for thermal conductivity calculations. Phys. Rev. B 96(2), 020302 (2017)Google Scholar
  25. 25.
    Madsen, G.K., Singh, D.J.: BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175(1), 67–71 (2006)CrossRefGoogle Scholar
  26. 26.
    Pizzi, G., Volja, D., Kozinsky, B., Fornari, M., Marzari, N.: BoltzWann: A code for the evaluation of thermoelectric and electronic transport properties with a maximally-localized Wannier functions basis. Comput. Phys. Commun. 185(1), 422–429 (2014)CrossRefGoogle Scholar
  27. 27.
    Togo, A., Chaput, L., Tanaka, I.: Distributions of phonon lifetimes in Brillouin zones. Phys. Rev. B 91(9), 094306 (2015)Google Scholar
  28. 28.
    Li, W., Carrete, J., Katcho, N.A., Mingo, N.: ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185(6), 1747–1758 (2014)CrossRefGoogle Scholar
  29. 29.
    Bowler, D.R., Miyazaki, T.: Calculations for millions of atoms with density functional theory: linear scaling shows its potential. J. Phys. Condens. Matter 22(7), 074207(2010)Google Scholar
  30. 30.
    Skylaris, C.K., Haynes, P.D., Mostofi, A.A., Payne, M.C.: Introducing ONETEP: linear-scaling density functional simulations on parallel computers. J. Chem. Phys. 122(8), 084119 (2005)CrossRefGoogle Scholar
  31. 31.
    Poncé, S., Margine, E.R., Verdi, C., Giustino, F.: EPW: electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions. Comput. Phy. Commun. 209, 116–133 (2016)CrossRefGoogle Scholar
  32. 32.
    Hellman, O., Broido, D.A.: Phonon thermal transport in Bi2Te3 from first principles. Phys. Rev. B 90(13), 134309 (2014)Google Scholar
  33. 33.
    Chiloyan, V., Huberman, S., Ding, Z., Mendoza, J., Maznev, A.A., Nelson, K.., Chen, G.: Micro/nanoscale thermal transport by phonons beyond the relaxation time approximation: Green’s function with the full scattering matrix. arXiv:1711.07151 (2017)
  34. 34.
    Broido, D.A., Malorny, M., Birner, G., Mingo, N., Stewart, D.A.: Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 91(23), 231922 (2007)CrossRefGoogle Scholar
  35. 35.
    Carrete, J., Li, W., Mingo, N., Wang, S., Curtarolo, S.: Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling. Phys. Rev. X 4(1), 011019 (2014)Google Scholar
  36. 36.
    Zhu, H., Hautier, G., Aydemir, U., Gibbs, Z.M., Li, G., Bajaj, S., Pöhls, J.-H., Broberg, D., Chen, W., Jain, A., White, M.A.: Computational and experimental investigation of TmAgTe2 and XYZ2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening. J. Mater. Chem. C 3(40), 10554–10565 (2015)CrossRefGoogle Scholar
  37. 37.
    Oliynyk, A.O., Antono, E., Sparks, T.D., Ghadbeigi, L., Gaultois, M.W., Meredig, B., Mar, A.: High-throughput machine-learning-driven synthesis of full-Heusler compounds. Chem. Mater. 28(20), 7324–7331 (2016)CrossRefGoogle Scholar
  38. 38.
    Xing, G., Sun, J., Li, Y., Fan, X., Zheng, W., Singh, D.J.: Electronic fitness function for screening semiconductors as thermoelectric materials. Phys. Rev. Mater. 1(6), 065405 (2017)Google Scholar
  39. 39.
    Chen, X., Parker, D., Singh, D..: Importance of non-parabolic band effects in the thermoelectric properties of semiconductors. Sci. Rep. 3, 3168 (2013)Google Scholar
  40. 40.
    Li, D., McGaughey, A.J.: Phonon dynamics at surfaces and interfaces and its implications in energy transport in nanostructured materials—an opinion paper. Nanoscale Microscale Thermophys. Eng. 19(2), 166–182 (2015)CrossRefGoogle Scholar
  41. 41.
    Xu, Z.: Heat transport in low-dimensional materials: a review and perspective. Theor. Appl. Mech. Lett. 6(3), 113–121 (2016)CrossRefGoogle Scholar
  42. 42.
    Katz, H.E., Poehler, T.O. (eds.): Innovative Thermoelectric Materials: Polymer, Nanostructure and Composite Thermoelectrics. World Scientific (2016)Google Scholar
  43. 43.
    McGaughey, A.J., Kaviany, M: Phonon transport in molecular dynamics simulations: formulation and thermal conductivity prediction. Adv. Heat Transf. 39, 169–255 (2006)Google Scholar
  44. 44.
    de Sousa Oliveira, L., Neophytou, N.: Large-scale molecular dynamics investigation of geometrical features in nanoporous Si. Phys. Rev. B 100, 035409 (2019)Google Scholar
  45. 45.
    Meller, J. et al.: Molecular dynamics. ELS (2001)Google Scholar
  46. 46.
    LeSar, R.: Introduction to Computational Materials Science: Fundamentals to Applications. Cambridge University Press (2013)Google Scholar
  47. 47.
    Tian, Z., Lee, S., Chen. G.: A comprehensive review of heat transfer in thermoelectric materials and devices. Ann. Rev. Heat Transf. 17, 425–483 2014CrossRefGoogle Scholar
  48. 48.
    Green, M.S.: Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22(3), 398–413 1954CrossRefGoogle Scholar
  49. 49.
    Kubo, R.: Statistical-mechanical theory of irreversible processes. I. general theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12(6), 570–586 (1957)CrossRefGoogle Scholar
  50. 50.
    Müller-Plathe, F.: A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106(14), 6082–6085 (1997)CrossRefGoogle Scholar
  51. 51.
    Sellan, D.P., Landry, E.S., Turney, J.E., McGaughey, A.J.H., Amon, C.H.: Size effects in molecular dynamics thermal conductivity predictions. Phy. Rev. B 81(21), 214305 (2010)Google Scholar
  52. 52.
    Vargiamidis, V., & Neophytou, N.: Hierarchical nanostructuring approaches for thermoelectric materials with high power factors. Physical Review B, 99(4), 045405, (2019)Google Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of EngineeringUniversity of WarwickCoventryUK

Personalised recommendations